137 resultados para video object segmentation
Resumo:
In this paper, a forward-looking infrared (FLIR) video surveillance system is presented for collision avoidance of moving ships to bridge piers. An image pre-processing algorithm is proposed to reduce clutter noises by multi-scale fractal analysis, in which the blanket method is used for fractal feature computation. Then, the moving ship detection algorithm is developed from image differentials of the fractal feature in the region of surveillance between regularly interval frames. Experimental results have shown that the approach is feasible and effective. It has achieved real-time and reliable alert to avoid collisions of moving ships to bridge piers
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
The present work presents a new method for activity extraction and reporting from video based on the aggregation of fuzzy relations. Trajectory clustering is first employed mainly to discover the points of entry and exit of mobiles appearing in the scene. In a second step, proximity relations between resulting clusters of detected mobiles and contextual elements from the scene are modeled employing fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows building the structure of the scene and characterises the ongoing different activities of the scene. Discovered activity zones can be reported as activity maps with different granularities thanks to the analysis of the transitive closure matrix. Taking advantage of the soft relation properties, activity zones and related activities can be labeled in a more human-like language. We present results obtained on real videos corresponding to apron monitoring in the Toulouse airport in France.