81 resultados para time-optimal trajectory planning
Resumo:
The time taken to consider development proposals within the English planning system continues to provoke great policy concern despite a decade of inquiry and policy change. The results of an extensive site-based survey and hedonic modelling exercise across 45 local authorities are reported here. The analysis reveals a slow, uncertain system. It identifies planning delay as a serious problem for housing supply and its ability to respond to increases in demand. Only a relatively limited set of factors seem relevant in explaining differences in times and the results suggest that 80% of councils’ performances are statistically indistinguishable from each other. These findings question the policy emphasis put on rankings of local authorities, though some influence from local politics is apparent. Development control is consistently a lengthy and uncertain process due to its complexity. Therefore, success in lowering planning delay is only likely through radical simplification.
Resumo:
Government policies have backed intermediate housing market mechanisms like shared equity, intermediate rented and shared ownership (SO) as potential routes for some households, who are otherwise squeezed between the social housing and the private market. The rhetoric deployed around such housing has regularly contained claims about its social progressiveness and role in facilitating socio-economic mobility, centring on a claim that SO schemes can encourage people to move from rented accommodation through a shared equity phase and into full owner-occupation. SO has been justified on the grounds of it being transitional state, rather than a permanent tenure. However SO buyers may be laden with economic cost-benefit structures that do not stack up evenly and as a consequence there may be little realistic prospect of ever reaching a preferred outcome. Such behaviours have received little empirical attention as yet despite, the SO model arguably offers a sub-optimal solution towards homeownership, or in terms of wider quality of life. Given the paucity of rigorous empirical work on this issue, this paper delineates the evidence so far and sets out a research agenda. Our analysis is based on a large dataset of new shared owners, observing an information base that spans the past decade. We then set out an agenda to further examine the behaviours of the SO occupants and to examine the implications for future public policy based on existing literature and our outline findings. This paper is particularly opportune at a time of economic uncertainty and an overriding ‘austerity’ drive in public funding in the UK, through which SO schemes have enjoyed support uninterruptedly thus far.
Resumo:
Expectations of future market conditions are generally acknowledged to be crucial for the development decision and hence for shaping the built environment. This empirical study of the Central London office market from 1987 to 2009 tests for evidence of adaptive and naive expectations. Applying VAR models and a recursive OLS regression with one-step forecasts, we find evidence of adaptive and naïve, rather than rational expectations of developers. Although the magnitude of the errors and the length of time lags vary over time and development cycles, the results confirm that developers’ decisions are explained to a large extent by contemporaneous and past conditions in both London submarkets. The corollary of this finding is that developers may be able to generate excess profits by exploiting market inefficiencies but this may be hindered in practice by the long periods necessary for planning and construction of the asset. More generally, the results of this study suggest that real estate cycles are largely generated endogenously rather than being the result of unexpected exogenous shocks.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects from a sample of local authorities in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. Hedonic analysis indicated that there is considerable variation in time it takes local authorities to process planning applications, with the worst being four times slower than the best. Smaller builders and housing association developments are processed more quickly than those of large developers and small sites appear to be particularly time intensive. These results suggest that delays in development control may be a significant contributory factor to the low responsiveness of UK housing supply to upturns in market activity.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects from a sample of local authorities in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. If these results are representative of the country as a whole, they indicate that planning delay could be a major cause of the slow responsiveness of British housing supply.
Resumo:
There is growing international interest in the impact of regulatory controls on the supply of housing. Most research focuses on the supply impacts of prescribed limits on land use but housing supply may also be affected by the process of planning monitoring and approval but this is hard to measure in detail. The UK has a particularly restrictive planning regime and a detailed and uncertain process of development control linked to it, but does offer the opportunity of detailed site-based investigation of planning delay. This paper presents the findings of empirical research on the time taken to gain planning permission for selected recent major housing projects in southern England. The scale of delay found was far greater than is indicated by average official data measuring the extent to which local authorities meet planning delay targets. Hedonic modelling indicated that there is considerable variation in the time it takes local authorities to process planning applications. Housing association developments are processed more quickly than those of large developers and small sites appear to be particularly time-intensive. These results suggest that delays in development control may be a significant contributory factor to the low responsiveness of UK housing supply to upturns in market activity.
Resumo:
We examine differential equations where nonlinearity is a result of the advection part of the total derivative or the use of quadratic algebraic constraints between state variables (such as the ideal gas law). We show that these types of nonlinearity can be accounted for in the tangent linear model by a suitable choice of the linearization trajectory. Using this optimal linearization trajectory, we show that the tangent linear model can be used to reproduce the exact nonlinear error growth of perturbations for more than 200 days in a quasi-geostrophic model and more than (the equivalent of) 150 days in the Lorenz 96 model. We introduce an iterative method, purely based on tangent linear integrations, that converges to this optimal linearization trajectory. The main conclusion from this article is that this iterative method can be used to account for nonlinearity in estimation problems without using the nonlinear model. We demonstrate this by performing forecast sensitivity experiments in the Lorenz 96 model and show that we are able to estimate analysis increments that improve the two-day forecast using only four backward integrations with the tangent linear model. Copyright © 2011 Royal Meteorological Society
Resumo:
Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.
Resumo:
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.
Resumo:
Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.
Resumo:
First, we survey recent research in the application of optimal tax theory to housing. This work suggests that the under-taxation of housing for owner occupation distorts investment so that owner occupiers are encouraged to over-invest in housing. Simulations of the US economy suggest that this is true there. But, the theoretical work excludes consideration of land and the simulations exclude consideration of taxes other than income taxes. These exclusions are important for the US and UK economies. In the US, the property tax is relatively high. We argue that excluding the property tax is wrong, so that, when the property tax is taken into account, owner occupied housing is not undertaxed in the US. In the UK, property taxes are relatively low but the cost of land has been increasing in real terms for forty years as a result of a policy of constraining land for development. The price of land for housing is now higher than elsewhere. Effectively, an implicit tax is paid by first time buyers which has reduced housing investment. When land is taken into account over-investment in housing is not encouraged in the UK either.
Resumo:
We study a two-way relay network (TWRN), where distributed space-time codes are constructed across multiple relay terminals in an amplify-and-forward mode. Each relay transmits a scaled linear combination of its received symbols and their conjugates,with the scaling factor chosen based on automatic gain control. We consider equal power allocation (EPA) across the relays, as well as the optimal power allocation (OPA) strategy given access to instantaneous channel state information (CSI). For EPA, we derive an upper bound on the pairwise-error-probability (PEP), from which we prove that full diversity is achieved in TWRNs. This result is in contrast to one-way relay networks, in which case a maximum diversity order of only unity can be obtained. When instantaneous CSI is available at the relays, we show that the OPA which minimizes the conditional PEP of the worse link can be cast as a generalized linear fractional program, which can be solved efficiently using the Dinkelback-type procedure.We also prove that, if the sum-power of the relay terminals is constrained, then the OPA will activate at most two relays.
Resumo:
There is a current need to constrain the parameters of gravity wave drag (GWD) schemes in climate models using observational information instead of tuning them subjectively. In this work, an inverse technique is developed using data assimilation principles to estimate gravity wave parameters. Because mostGWDschemes assume instantaneous vertical propagation of gravity waves within a column, observations in a single column can be used to formulate a one-dimensional assimilation problem to estimate the unknown parameters. We define a cost function that measures the differences between the unresolved drag inferred from observations (referred to here as the ‘observed’ GWD) and the GWD calculated with a parametrisation scheme. The geometry of the cost function presents some difficulties, including multiple minima and ill-conditioning because of the non-independence of the gravity wave parameters. To overcome these difficulties we propose a genetic algorithm to minimize the cost function, which provides a robust parameter estimation over a broad range of prescribed ‘true’ parameters. When real experiments using an independent estimate of the ‘observed’ GWD are performed, physically unrealistic values of the parameters can result due to the non-independence of the parameters. However, by constraining one of the parameters to lie within a physically realistic range, this degeneracy is broken and the other parameters are also found to lie within physically realistic ranges. This argues for the essential physical self-consistency of the gravity wave scheme. A much better fit to the observed GWD at high latitudes is obtained when the parameters are allowed to vary with latitude. However, a close fit can be obtained either in the upper or the lower part of the profiles, but not in both at the same time. This result is a consequence of assuming an isotropic launch spectrum. The changes of sign in theGWDfound in the tropical lower stratosphere, which are associated with part of the quasi-biennial oscillation forcing, cannot be captured by the parametrisation with optimal parameters.
Resumo:
The problem of planning multiple vehicles deals with the design of an effective algorithm that can cause multiple autonomous vehicles on the road to communicate and generate a collaborative optimal travel plan. Our modelling of the problem considers vehicles to vary greatly in terms of both size and speed, which makes it suboptimal to have a faster vehicle follow a slower vehicle or for vehicles to drive with predefined speed lanes. It is essential to have a fast planning algorithm whilst still being probabilistically complete. The Rapidly Exploring Random Trees (RRT) algorithm developed and reported on here uses a problem specific coordination axis, a local optimization algorithm, priority based coordination, and a module for deciding travel speeds. Vehicles are assumed to remain in their current relative position laterally on the road unless otherwise instructed. Experimental results presented here show regular driving behaviours, namely vehicle following, overtaking, and complex obstacle avoidance. The ability to showcase complex behaviours in the absence of speed lanes is characteristic of the solution developed.
Resumo:
Context: Emotion regulation is critically disrupted in depression and use of paradigms tapping these processes may uncover essential changes in neurobiology during treatment. In addition, as neuroimaging outcome studies of depression commonly utilize solely baseline and endpoint data – which is more prone to week-to week noise in symptomatology – we sought to use all data points over the course of a six month trial. Objective: To examine changes in neurobiology resulting from successful treatment. Design: Double-blind trial examining changes in the neural circuits involved in emotion regulation resulting from one of two antidepressant treatments over a six month trial. Participants were scanned pretreatment, at 2 months and 6 months posttreatment. Setting: University functional magnetic resonance imaging facility. Participants: 21 patients with Major Depressive Disorder and without other Axis I or Axis II diagnoses and 14 healthy controls. Interventions: Venlafaxine XR (doses up to 300mg) or Fluoxetine (doses up to 80mg). Main Outcome Measure: Neural activity, as measured using functional magnetic resonance imaging during performance of an emotion regulation paradigm as well as regular assessments of symptom severity by the Hamilton Rating Scale for Depression. To utilize all data points, slope trajectories were calculated for rate of change in depression severity as well as rate of change of neural engagement. Results: Those depressed individuals showing the steepest decrease in depression severity over the six months were those individuals showing the most rapid increases in BA10 and right DLPFC activity when regulating negative affect over the same time frame. This relationship was more robust than when using solely the baseline and endpoint data. Conclusions: Changes in PFC engagement when regulating negative affect correlate with changes in depression severity over six months. These results are buttressed by calculating these statistics which are more reliable and robust to week-to-week variation than difference scores.