134 resultados para sulfur species and volatile fatty acids
Resumo:
OBJECTIVE: The present study was carried out to investigate effects of meals, rich in either saturated fatty acids (SFA), or n-6 or n-3 fatty acids, on postprandial plasma lipid and hormone concentrations as well as post-heparin plasma lipoprotein lipase (LPL) activity. DESIGN: The study was a randomized single-blind study comparing responses to three test meals. SETTING: The volunteers attended the Clinical Investigation Unit of the Royal Surrey County Hospital on three separate occasions in order to consume the meals. SUBJECTS: Twelve male volunteers with an average age of 22.5 +/- 1.4 years (mean +/- SD), were selected from the University of Surrey student population; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: Three meals were given in the early evening and postprandial responses were followed overnight for 11h. The oils used to prepare each of the three test meals were: a mixed oil rich in saturated fatty acids (SFA) which mimicked the fatty acid composition of the current UK diet, corn oil, rich in n-6 fatty acids and a fish oil concentrate (MaxEPA) rich in n-3 fatty acids. The oil under investigation (40 g) was incorporated into the test meals which were otherwise identical [208 g carbohydrates, 35 g protein, 5.65 MJ (1350 kcal) energy]. Postprandial plasma triacylglycerol (TAG), gastric inhibitory polypeptide (GIP), and insulin responses, as well as post-heparin LPL activity (measured at 12 h postprandially only) were investigated. RESULTS: Fatty acids of the n-3 series significantly reduced plasma TAG responses compared to the mixed oil meal (P < 0.05) and increased post-heparin LPL activity 15 min after the injection of heparin (P < 0.01). A biphasic response was observed in TAG, with peak responses occurring at 1 h and between 3-7 h postprandially. GIP and insulin showed similar responses to the three test meals and no significant differences were observed. CONCLUSION: We conclude that fish oils can decrease postprandial plasma TAG levels partly through an increase in post-heparin LPL activity, which however, is not due to increased GIP or insulin concentrations.
Resumo:
OBJECTIVE: The present study was carried out to determine effects of test meals of different fatty acid compositions on postprandial lipoprotein and apolipoprotein metabolism. DESIGN: The study was a randomized, single blind design. SETTING: The study was carried out in the Clinical Investigation Unit of the Royal Surrey County Hospital. SUBJECTS: Twelve male normal subjects with an average age of 22.4 +/- 1.4 years (mean +/- SD) were selected from the student population of the University of Surrey; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: The subjects were given three evening test meals on three separate occasions, in which the oils used were either a mixed oil (rich in saturated fatty acids and approximated the fatty acid intake of the current UK diet), corn oil (rich in n-6 fatty acids), or fish oil (rich in n-3 fatty acids) 40 g of the oil under investigation were incorporated into a rice-based test meal. Triacylglycerol-rich lipoproteins-triacylglycerol (TRL-TAG), TRL-cholesterol (TRL-cholesterol), plasma-TAG, plasma cholesterol (T-C), and serum apolipoprotein A-I and B (apo A-I and B) responses were measured. Postprandial responses were followed for 11 h. RESULTS: Postprandial plasma-TAG responses, calculated as incremental areas under the response curves (IAUC) were significantly reduced following the fish oil meal [365.5 +/- 145.4 mmol/l x min (mean +/- SD)[ compared with the mixed oil meal (552.0 +/- 141.7 mmol/l x min) (P < 0.05) and there was a strong trend towards the same direction in the TRL-TAG responses. In all instances, plasma-and TRL-TAG showed a biphasic response with increased concentrations occurring at 1h and between 3 and 7h postprandially. TRL-cholesterol, T-C, and serum apo A-I and B responses to the three meals were similar. CONCLUSIONS: The findings support the view that fish oils decrease postprandial lipaemia and this may be an important aspect of their beneficial effects in reducing risk of coronary heart disease (CHD). Further work is required to determine the mechanisms responsible for this effect.
Resumo:
The present study reports results from two investigations to determine effects of a 6-week period of moderate n-3 fatty acid supplementation (2.7 g/d) on fasting and on postprandial triacylglycerol and metabolic hormone concentrations in response to standard test meals. In the first study postprandial responses were followed for 210 min after an early morning test meal challenge; in the second study responses to an evening test meal were followed during the evening and overnight for a total period of 12 h. In both studies postprandial triacylglycerol responses to the test meals were significantly reduced after compared with before fish-oil supplementation. In the second study the triacylglycerol peak response seen between 200 and 400 min in subjects studied before supplementation with fish oils was almost completely absent in the same subjects after 6 weeks of n-3 fatty acid supplementation. Analysis of fasting concentrations of metabolites and hormones was carried out on the combined data from the two studies. There were no significant differences in total, low-density-lipoprotein- or high-density-lipoprotein-cholesterol concentrations during fish-oil supplementation, although there was considerable individual variation in cholesterol responses to the supplement. Concentrations of Apo-B and Apo-A1 were unchanged during supplementation with fish oils. Fasting and early morning postprandial GIP concentrations were lower in subjects taking fish oils, possibly due to acute effects of fish-oil capsules taken on the evening before the studies. In both studies fasting insulin and glucose and postprandial insulin concentrations remained unchanged following fish-oil supplementation. The results do not support the view that triacylglycerol-lowering effects of n-3 fatty acids are due to modulation of insulin secretion mediated via the enteroinsular axis. Further studies are required to determine the precise mechanism by which fish oils reduce both fasting and postprandial triacylglycerol concentrations.
Resumo:
The possible relationship between consumption of trans fatty acids (TFAs) and risk of insulin resistance or development of diabetes mellitus type II has been considered by a number of human and animal studies over the past decade. This review evaluates the evidence, and concludes that there is limited evidence for a weak association at high TFA intakes, but very little convincing evidence that habitual exposure as part of a standard western diet has a significant contribution to risk of diabetes or insulin resistance. The possibility of increased risk for individuals with particular genotypes (such as the FABP2 Thr54 allele) is of interest, but further work would be required to provide sufficient evidence of any association.
Resumo:
Diets high in monounsaturated fatty acids (MUFA) are increasingly being recommended as a highly-effective cholesterol-lowering strategy in populations at risk of CHD. However, the need for a re-appraisal of the benefits of diets rich in MUFA became apparent as a result of recent studies showing that meals high in olive oil cause greater postprandial activation of blood coagulation factor VII than meals rich in saturated fatty acids. The present review evaluates the evidence for the effects of MUFA-rich diets on fasting and postprandial measurements of haemostasis, and describes data from a recently-completed long-term controlled dietary intervention study. The data show that a background diet high in MUFA has no adverse effect on fasting haemostatic variables and decreases the postprandial activation of factor VII in response to a standard fat-containing meal. Since the same study also showed a significant reduction in the ex vivo activation of platelets in subjects on the high-MUFA diet, the overall findings suggest that there is no reason for concern regarding adverse haemostatic consequences of high-MUFA diets.
Resumo:
A considerable amount of evidence has accumulated to support the view that the very long chain omega 3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) have beneficial cardiovascular and anti-inflammatory properties and that levels of their consumption are insufficient in most Western diets. More recently, attention has been given to the possibility that the precursor omega-3 PUFA, alpha linolenic acid (ALNA), may share some of the beneficial actions of EPA/DHA on human health. Further research into the metabolism and physiological actions of ALNA, and comparisons with EPA/DHA, is needed before conclusions regarding the optimal amounts and types of omega-3 PUFA for human health can be defined. Conjugated linoleic acid (CLA), which arises as a metabolic by-product of rumen hydrogenation and which is found in foods of animal origin, has been proposed to possess potent health promoting properties, but much of this research has been conducted in experimental animals. There is an urgent need for complementary studies in human volunteers, to confirm the putative anti-carcinogenic, anti-atherogenic, anti-lipogenic and immuno-suppressive properties of CLA.
Resumo:
The changes occurring in the levels of nutritionally relevant oil components were assessed during repeated frying of potato chips in a blend of palm olein and canola oil (1:1 w/w). The blend suffered minimal reductions in omega-3 and omega-6 polyunsaturated fatty acids. There was no significant difference between the fatty acid composition of the oil extracted from the product and that of the frying medium, in all three cases. The blend also contained a significant amount of tocols which add a nutritional value to the oil. The concentration of the tocols was satisfactorily retained over the period of oil usage, in contrast to the significant loses observed in the case of the individual oils. The blend also performed well when assessed by changes in total polar compounds, free fatty acids, p-anisidine value. When fried in used oil, the product oil content increased progressively with oil usage time. This study shows that blended frying oils can combine good stability and nutritional quality
Resumo:
Purpose of review: To provide an overview of the key earlier intervention studies with marine omega-3 fatty acids and to review and comment on recent studies reporting on mortality outcomes and on selected underlying mechanisms of action. Recent findings: Studies relating marine omega-3 fatty acid status to current or future outcomes continue to indicate benefits, for example, on incident heart failure, congestive heart failure, acute coronary syndrome, and all-cause mortality. New mechanistic insights into the actions of marine omega-3 fatty acids have been gained. Three fairly large secondary prevention trials have not confirmed the previously reported benefit of marine omega-3 fatty acids towards mortality in survivors of myocardial infarction. Studies of marine omega-3 fatty acids in atrial fibrillation and in cardiac surgery-induced atrial fibrillation have produced inconsistent findings and meta-analyses demonstrate no benefit. A study confirmed that marine omega-3 fatty acids reduce the inflammatory burden with advanced atherosclerotic plaques, so inducing greater stability. Summary: Recent studies of marine omega-3 fatty acids on morbidity of, and mortality from, coronary and cardiovascular disease have produced mixed findings. These studies raise new issues to be addressed in future research.
Resumo:
Purpose of review: Vascular function is recognized as an early and integrative marker of cardiovascular disease. While there is consistent evidence that the quantity of dietary fat has significant effects on vascular function, the differential effects of individual fatty acids is less clear. This review summarizes recent evidence from randomly controlled dietary studies on the impact of dietary fatty acids on vascular function, as determined by flow-mediated dilatation (FMD). Recent findings: Critical appraisal is given to five intervention studies (one acute, four chronic) which examined the impact of long-chain n-3 polyunsaturated fatty acid [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] on FMD. In the acute setting, a high dose of long-chain n-3 polyunsaturated fatty acid (4.9 g per 70 kg man) improved postprandial FMD significantly, compared with a saturated fatty acid-rich meal in healthy individuals. In longer-term studies, there was limited evidence for a significant effect of EPA/DHA on FMD in diseased groups. Summary: The strongest evidence for the benefits of EPA/DHA on vascular function is in the postprandial state. More evidence from randomly controlled intervention trials with foods will be required to substantiate the long-term effects of EPA/DHA, to inform public health and clinical recommendations.