170 resultados para stereo matching problem
Resumo:
The well-studied link between psychotic traits and creativity is a subject of much debate. The present study investigated the extent to which schizotypic personality traits - as measured by O-LIFE (Oxford-Liverpool Inventory of Feelings and Experiences) - equip healthy individuals to engage as groups in everyday tasks. From a sample of 69 students, eight groups of four participants - comprised of high, medium, or low-schizotypy individuals - were assembled to work as a team to complete a creative problem-solving task. Predictably, high scorers on the O-LIFE formulated a greater number of strategies to solve the task, indicative of creative divergent thinking. However, for task success (as measured by time taken to complete the problem) an inverted U shaped pattern emerged, whereby high and low-schizotypy groups were consistently faster than medium schizotypy groups. Intriguing data emerged concerning leadership within the groups, and other tangential findings relating to anxiety, competition and motivation were explored. These findings challenge the traditional cliche that psychotic personality traits are linearly related to creative performance, and suggest that the nature of the problem determines which thinking styles are optimally equipped to solve it. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Two experiments implement and evaluate a training scheme for learning to apply frequency formats to probability judgements couched in terms of percentages. Results indicate that both conditional and cumulative probability judgements can be improved in this manner, however the scheme is insufficient to promote any deeper understanding of the problem structure. In both experiments, training on one problem type only (either conditional or cumulative risk judgements) resulted in an inappropriate transfer of a learned method at test. The obstacles facing a frequency-based training programme for teaching appropriate use of probability data are discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved [1, 2]. Previous evidence shows that the human visual system accounts for the distance the observer has walked [3,4] and the separation of the eyes [5-8] when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.
Resumo:
Typically, algorithms for generating stereo disparity maps have been developed to minimise the energy equation of a single image. This paper proposes a method for implementing cross validation in a belief propagation optimisation. When tested using the Middlebury online stereo evaluation, the cross validation improves upon the results of standard belief propagation. Furthermore, it has been shown that regions of homogeneous colour within the images can be used for enforcing the so-called "Segment Constraint". Developing from this, Segment Support is introduced to boost belief between pixels of the same image region and improve propagation into textureless regions.
Resumo:
We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.
Resumo:
A fast Knowledge-based Evolution Strategy, KES, for the multi-objective minimum spanning tree, is presented. The proposed algorithm is validated, for the bi-objective case, with an exhaustive search for small problems (4-10 nodes), and compared with a deterministic algorithm, EPDA and NSGA-II for larger problems (up to 100 nodes) using benchmark hard instances. Experimental results show that KES finds the true Pareto fronts for small instances of the problem and calculates good approximation Pareto sets for larger instances tested. It is shown that the fronts calculated by YES are superior to NSGA-II fronts and almost as good as those established by EPDA. KES is designed to be scalable to multi-objective problems and fast due to its small complexity.
Resumo:
An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.