70 resultados para service-oriented grid computing systems
Resumo:
Although a number of studies have reported that force feedback gravity wells can improve performance in "point-and-click" tasks, there have been few studies addressing issues surrounding the use of gravity wells for multiple on-screen targets. This paper investigates the performance of users, both with and without motion-impairments, in a "point-and-click" task when an undesired haptic distractor is present. The importance of distractor location is studied explicitly. Results showed that gravity wells can still improve times and error rates, even on occasions when the cursor is pulled into a distractor. The greatest improvement is seen for the most impaired users. In addition to traditional measures such as time and errors, performance is studied in terms of measures of cursor movement along a path. Two cursor measures, angular distribution and temporal components, are proposed and their ability to explain performance differences is explored.
Resumo:
This paper describes a study of the cursor trajectories of motion-impaired users in "point and click" interactions. A characteristic of cursor movement is proposed that aims to capture the spatial distribution of cursor movement about a target. This characteristic indicates that users often exhibit increased cursor movement in the vicinity of the target, have more difficulty performing the "clicking" part of the interaction as compared to the navigation part, and tend to navigate directly toward the target during the middle portion of the cursor trajectory. The implications of these characteristic behaviours on interface design are discussed.
Resumo:
Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.
Resumo:
Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element
Resumo:
In this project we explore how to enhance the experience and understanding of cultural heritage in museums and heritage sites by creating interactive multisensory objects collaboratively with artists, technologists and people with learning disabilities. We focus here on workshops conducted during the first year of a three year project in which people with learning disabilities each constructed a 'sensory box' to represent their experiences of Speke Hall, a heritage site in the UK. The box is developed further in later workshops which explore aspects of physicality and how to appeal to the entire range of senses, making use of Arduino technology and basic sensors to enable an interactive user experience.
Resumo:
Older adult computer users often lose track of the mouse cursor and so resort to methods such as shaking the mouse or searching the entire screen to find the cursor again. Hence, this paper describes how a standard optical mouse was modified to include a touch sensor, activated by releasing and touching the mouse, which automatically centers the mouse cursor to the screen, potentially making it easier to find a ‘lost’ cursor. Six older adult computer users and six younger computer users were asked to compare the touch sensitive mouse with cursor centering with two alternative techniques for locating the mouse cursor: manually shaking the mouse and using the Windows sonar facility. The time taken to click on a target after a distractor task was recorded, and results show that centering the mouse was the fastest to use, with a 35% improvement over shaking the mouse. Five out of six older participants ranked the touch sensitive mouse with cursor centering as the easiest to use.
Resumo:
We extended 'littleBits' electronic components by attaching them to a larger base that was designed to help make them easier to pick up and handle, and easier to assemble into circuits for people with learning disabilities. A pilot study with a group of students with learning disabilities was very positive. There were fewer difficulties in assembling the components into circuits, and problems such as attempting to connect them the wrong way round or the wrong way up were eliminated completely.
Resumo:
Monitoring nutritional intake is an important aspect of the care of older people, particularly for those at risk of malnutrition. Current practice for monitoring food intake relies on hand written food charts that have several inadequacies. We describe the design and validation of a tool for computer-assisted visual assessment of patient food and nutrient intake. To estimate food consumption, the application compares the pixels the user rubbed out against predefined graphical masks. Weight of food consumed is calculated as a percentage of pixels rubbed out against pixels in the mask. Results suggest that the application may be a useful tool for the conservative assessment of nutritional intake in hospitals.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.
Resumo:
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.
Resumo:
One of the primary features of modern government-to-citizen (G2C) service provision is the ability to offer a citizen-centric view of the e-government portal. Life-event approach is one of the most widely adopted paradigms supporting the idea of solving a complex event in a citizen’s life through a single service provision. Several studies have used this approach to design e-government portals. However, they were limited in terms of use and scalability. There were no mechanisms that show how to specify a life-event for structuring public e-services, or how to systematically match life-events with these services taking into consideration the citizen needs. We introduce the NOrm-Based Life-Event (NoBLE) framework for G2C e-service provision with a set of mechanisms as a guide for designing active life-event oriented e-government portals.
Resumo:
Distributed computing paradigms for sharing resources such as Clouds, Grids, Peer-to-Peer systems, or voluntary computing are becoming increasingly popular. While there are some success stories such as PlanetLab, OneLab, BOINC, BitTorrent, and SETI@home, a widespread use of these technologies for business applications has not yet been achieved. In a business environment, mechanisms are needed to provide incentives to potential users for participating in such networks. These mechanisms may range from simple non-monetary access rights, monetary payments to specific policies for sharing. Although a few models for a framework have been discussed (in the general area of a "Grid Economy"), none of these models has yet been realised in practice. This book attempts to fill this gap by discussing the reasons for such limited take-up and exploring incentive mechanisms for resource sharing in distributed systems. The purpose of this book is to identify research challenges in successfully using and deploying resource sharing strategies in open-source and commercial distributed systems.