61 resultados para right-to-know of the partner
Resumo:
This paper outlines a study of the microstructure of thin sheets of ivory used as a painting support for portrait miniatures. Warping of the ivory support is one of the main problems commonly found in portrait miniatures from the late eighteenth century and early nineteenth century. Portrait miniatures from this period are painted on very thin sheets of ivory that are often only 0.2 mm in thickness. Warping can lead to cracking of the ivory and can also accentuate flaking of the paint layer. The problem of warping in ivory has thus been of long-term interest to conservators who deal with portrait miniatures, including those at the Victoria and Albert (V&A) Museum. The causes of warping are complex. However, it should be noted that artists normally stuck the thin ivory sheets onto paper or card before commencing the painting. The possible causes of warping therefore are thought to relate to the differential reactions of the ivory/adhesive/paper or card layers to changes in relative humidity (RH). It is well known that ivory is hygroscopic and anisotropic.1 However, only a few scientific studies have been carried out related to this subject and systematic analyses of the morphological and microstructural changes due to changes in RH or moisture in such thin sheets of ivory have yet to be investigated.
Resumo:
A global aerosol transport model (Oslo CTM2) with main aerosol components included is compared to five satellite retrievals of aerosol optical depth (AOD) and one data set of the satellite-derived radiative effect of aerosols. The model is driven with meteorological data for the period November 1996 to June 1997 which is the time period investigated in this study. The modelled AOD is within the range of the AOD from the various satellite retrievals over oceanic regions. The direct radiative effect of the aerosols as well as the atmospheric absorption by aerosols are in both cases found to be of the order of 20 Wm−2 in certain regions in both the satellite-derived and the modelled estimates as a mean over the period studied. Satellite and model data exhibit similar patterns of aerosol optical depth, radiative effect of aerosols, and atmospheric absorption of the aerosols. Recently published results show that global aerosol models have a tendency to underestimate the magnitude of the clear-sky direct radiative effect of aerosols over ocean compared to satellite-derived estimates. However, this is only to a small extent the case with the Oslo CTM2. The global mean direct radiative effect of aerosols over ocean is modelled with the Oslo CTM2 to be –5.5 Wm−2 and the atmospheric aerosol absorption 1.5 Wm−2.
Resumo:
Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.
Resumo:
A global river routing scheme coupled to the ECMWF land surface model is implemented and tested within the framework of the Global Soil Wetness Project II, to evaluate the feasibility of modelling global river runoff at a daily time scale. The exercise is designed to provide benchmark river runoff predictions needed to verify the land surface model. Ten years of daily runoff produced by the HTESSEL land surface scheme is input into the TRIP2 river routing scheme in order to generate daily river runoff. These are then compared to river runoff observations from the Global Runoff Data Centre (GRDC) in order to evaluate the potential and the limitations. A notable source of inaccuracy is bias between observed and modelled discharges which is not primarily due to the modelling system but instead of to the forcing and quality of observations and seems uncorrelated to the river catchment size. A global sensitivity analysis and Generalised Likelihood Uncertainty Estimation (GLUE) uncertainty analysis are applied to the global routing model. The ground water delay parameter is identified as being the most sensitive calibration parameter. Significant uncertainties are found in results, and those due to parameterisation of the routing model are quantified. The difficulty involved in parameterising global river discharge models is discussed. Detailed river runoff simulations are shown for the river Danube, which match well observed river runoff in upstream river transects. Results show that although there are errors in runoff predictions, model results are encouraging and certainly indicative of useful runoff predictions, particularly for the purpose of verifying the land surface scheme hydrologicly. Potential of this modelling system on future applications such as river runoff forecasting and climate impact studies is highlighted. Copyright © 2009 Royal Meteorological Society.
Resumo:
1 The recent increase in planting of selected willow clones as energy crops for biomass production has resulted in a need to understand the relationship between commonly grown, clonally propagated genotypes and their pests. 2 For the first time, we present a study of the interactions of six willow clones and a previously unconsidered pest, the giant willow aphid Tuberolachnus salignus. 3 Tuberolachnus salignus alatae displayed no preference between the clones, but there was genetic variation in resistance between the clones; Q83 was the most resistant and led to the lowest reproductive performance in the aphid 4 Maternal effects buffered changes in aphid performance. On four tested willow clones fecundity of first generation aphids on the new host clone was intermediate to that of the second generation and that of the clone used to maintain the aphids in culture. 5 In the field, patterns of aphid infestation were highly variable between years, with the duration of attack being up to four times longer in 1999. In both years there was a significant effect of willow clone on the intensity of infestation. However, whereas Orm had the lowest intensity of infestation in the first year, Dasyclados supported a lower population level than other monitored clones in the second year.
Resumo:
A set of coupled ocean-atmosphere simulations using state of the art climate models is now available for the Last Glacial Maximum and the Mid-Holocene through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2). This study presents the large-scale features of the simulated climates and compares the new model results to those of the atmospheric models from the first phase of the PMIP, for which sea surface temperature was prescribed or computed using simple slab ocean formulations. We consider the large-scale features of the climate change, pointing out some of the major differences between the different sets of experiments. We show in particular that systematic differences between PMIP1 and PMIP2 simulations are due to the interactive ocean, such as the amplification of the African monsoon at the Mid-Holocene or the change in precipitation in mid-latitudes at the LGM. Also the PMIP2 simulations are in general in better agreement with data than PMIP1 simulations.
Resumo:
In theory, enrichment of resource in a predator-prey model leads to destabilization of the system, thereby collapsing the trophic interaction, a phenomenon referred to as "the paradox of enrichment". After it was first proposed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator-prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form, inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that, although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator-prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms, which may differ among systems, need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.
Resumo:
The paper seeks to draw attention to some of the recent cases relating to child custody law in Bangladesh where, deviating from orthodox Shari’a rules, courts have looked to ‘the welfare’ of the child in determining which parent shall have custody. In studying the recent ‘welfare of child’ standard that has been advanced by the courts in Bangladesh, the paper aims to explore its implications for Muslim women from a feminist perspective.
Resumo:
The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.
Resumo:
Improving lifestyle behaviours has considerable potential for reducing the global burden of non-communicable diseases, promoting better health across the life-course and increasing well-being. However, realising this potential will require the development, testing and implementation of much more effective behaviour change interventions than are used conventionally. Therefore, the aim of this study was to conduct a multi-centre, web-based, proof-of-principle study of personalised nutrition (PN) to determine whether providing more personalised dietary advice leads to greater improvements in eating patterns and health outcomes compared to conventional population-based advice. A total of 5,562 volunteers were screened across seven European countries; the first 1,607 participants who fulfilled the inclusion criteria were recruited into the trial. Participants were randomly assigned to one of the following intervention groups for a 6-month period: Level 0-control group-receiving conventional, non-PN advice; Level 1-receiving PN advice based on dietary intake data alone; Level 2-receiving PN advice based on dietary intake and phenotypic data; and Level 3-receiving PN advice based on dietary intake, phenotypic and genotypic data. A total of 1,607 participants had a mean age of 39.8 years (ranging from 18 to 79 years). Of these participants, 60.9 % were women and 96.7 % were from white-European background. The mean BMI for all randomised participants was 25.5 kg m(-2), and 44.8 % of the participants had a BMI ≥ 25.0 kg m(-2). Food4Me is the first large multi-centre RCT of web-based PN. The main outcomes from the Food4Me study will be submitted for publication during 2015.
Resumo:
A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homologue of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and towards its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.
Resumo:
The purity and structural stability of the high thermoelectric performance Cu12Sb4S13 and Cu10.4Ni1.6Sb4S13 tetrahedrite phases, synthesized by solid–liquid–vapor reaction and Spark Plasma Sintering, were studied at high temperature by Rietveld refinement using high resolution X-ray powder diffraction data, DSC/TG measurements and high resolution transmission electron microscopy. In a complementary study, the crystal structure of Cu10.5Ni1.5Sb4S13 as a function of temperature was investigated by powder neutron diffraction. The temperature dependence of the structural stability of ternary Cu12Sb4S13 is markedly different to that of the nickel-substituted phases, providing clear evidence for the significant and beneficial role of nickel substitution on both sample purity and stability of the tetrahedrite phase. Moreover, kinetic effects on the phase stability/decomposition have been identified and discussed in order to determine the maximum operating temperature for thermoelectric applications. The thermoelectric properties of these compounds have been determined for high density samples (>98%) prepared by Spark Plasma Sintering and therefore can be used as reference values for tetrahedrite samples. The maximum ZT of 0.8 was found for Cu10.4Ni1.6Sb4S13 at 700 K.
Resumo:
The i-motif structures are formed by oligonucleotides containing cytosine tracts under acidic conditions. The folding of the i-motif under physiological conditions is of great interest because of its biological role. In this study, we investigated the effect of the intra-strand cross-link on the stability of the i-motif structure. The 4-vinyl-substituted analog of thymidine (T-vinyl) was incorporated into the 5′-end of the human telomere complementary strand, which formed the intra-strand cross-link with the internal adenine. The intra-strand cross-linked i-motif displayed CD spectra similar to that of the natural i-motif at acidic pH, which was transformed into a random coil with the increasing pH. The pH midpoint for the transition from the i-motif to random coil increased from pH 6.1 for the natural one to pH 6.8 for the cross-linked one. The thermodynamic parameters were obtained by measuring the thermal melting behaviors by CD and UV, and it was determined that the intra-strand cross-linked i-motif is stabilized due to a favorable entropy effect. Thus, this study has clearly indicated the validity of the intra-strand cross-linking for stabilization of the i-motif structure.
Resumo:
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.
Resumo:
The extracellularly-responsive kinase (ERK) subfamily of mitogen-activated protein kinases (MAPKs) has been implicated in the regulation of cell growth and differentiation. Activation of ERKs involves a two-step protein kinase cascade lying upstream from ERK, in which the Raf family are the MAPK kinase kinases and the MEK1/MEK2 isoforms are the MAPK kinases. The linear sequence of Raf --> MEK --> ERK constitutes the ERK cascade. Although the ERK cascade is activated through growth factor-regulated receptor protein tyrosine kinases, they are also modulated through G protein-coupled receptors (GPCRs). All four G protein subfamilies (Gq/11 Gi/o, Gs and G12/13) influence the activation state of ERKs. In this review, we describe the ERK cascade and characteristics of its activation through GPCRs. We also discuss the identity of the intervening steps that may couple agonist binding at GPCRs to activation of the ERK cascade.