79 resultados para resistant cultivars
Resumo:
This paper proposes a new signaling scheme: orthogonal on-off BPSK (O3BPSK), for near-far resistant detection in the asynchronous DS/CDMA systems (up-link). The temporally adjacent bits from different users in the received signals are decoupled by using the on-off signaling, and the original data rate is maintained with no increase in transmission rate by adopting an orthogonal structure. The detector at the receiver is a one-shot linear decorrelating detector, which depends upon neither hard-decision nor specific channel coding. Some computer simulations are shown to confirm the theoretical analysis.
Resumo:
Little has been reported on the performance of near-far resistant CDMA detectors in the presence of system parameter estimation errors (SPEEs). Starting with the general mathematical model of matched filters, the paper examines the effects of three classes of SPEEs, i.e., time-delay, carrier phase, and carrier frequency errors, on the performance (BER) of an emerging type of near-far resistant coherent DS/SSMA detector, i.e., the linear decorrelating detector. For comparison, the corresponding results for the conventional detector are also presented. It is shown that the linear decorrelating detector can still maintain a considerable performance advantage over the conventional detector even when some SPEEs exist.
Resumo:
The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol−1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.
Resumo:
For the first time, it has been unequivocally shown that multiple-feed second-generation anticoagulant rodenticides were ineffective against a population of rats in N.W. Berkshire, UK because of an unusually high prevalence and high degree of resistance. Use of the non-anticoagulant rodenticide calciferol led to a substantial reduction in the population, although primary poisoning of small birds appeared to be greater than with anticoagulant baits. There was strong evidence that many of the surviving rats had developed an aversion towards calciferol-treated bait. A reduction in the degree of anticoagulant resistance in the population was evident after a period of 17 months without anticoagulant use. The long-term strategy to manage the resistant population should integrate non-anticoagulant and anticoagulant rodenticide use to take advantage of possible pleiotropic costs of resistance.
Resumo:
Physiological and yield traits such as stomatal conductance (mmol m-2s-1), Leaf relative water content (RWC %) and grain yield per plant were studied in a separate experiment. Results revealed that five out of sixteen cultivars viz. Anmol, Moomal, Sarsabz, Bhitai and Pavan, appeared to be relatively more drought tolerant. Based on morphophysiological results, studies were continued to look at these cultivars for drought tolerance at molecular level. Initially, four well recognized primers for dehydrin genes (DHNs) responsible for drought induction in T. durum L., T. aestivum L. and O. sativa L. were used for profiling gene sequence of sixteen wheat cultivars. The primers amplified the DHN genes variably like Primer WDHN13 (T. aestivum L.) amplified the DHN gene in only seven cultivars whereas primer TdDHN15 (T. durum L.) amplified all the sixteen cultivars with even different DNA banding patterns some showing second weaker DNA bands. Third primer TdDHN16 (T. durum L.) has shown entirely different PCR amplification prototype, specially showing two strong DNA bands while fourth primer RAB16C (O. sativa L.) failed to amplify DHN gene in any of the cultivars. Examination of DNA sequences revealed several interesting features. First, it identified the two exon/one intron structure of this gene (complete sequences were not shown), a feature not previously described in the two database cDNA sequences available from T. aestivum L. (gi|21850). Secondly, the analysis identified several single nucleotide polymorphisms (SNPs), positions in gene sequence. Although complete gene sequence was not obtained for all the cultivars, yet there were a total of 38 variable positions in exonic (coding region) sequence, from a total gene length of 453 nucleotides. Matrix of SNP shows these 37 positions with individual sequence at positions given for each of the 14 cultivars (sequence of two cultivars was not obtained) included in this analysis. It demonstrated a considerable diversity for this gene with only three cultivars i.e. TJ-83, Marvi and TD-1 being similar to the consensus sequence. All other cultivars showed a unique combination of SNPs. In order to prove a functional link between these polymorphisms and drought tolerance in wheat, it would be necessary to conduct a more detailed study involving directed mutation of this gene and DHN gene expression.
Resumo:
Small propagules like pollen or fungal spores may be dispersed by the wind over distances of hundreds or thousands of kilometres,even though the median dispersal may be only a few metres. Such long-distance dispersal is a stochastic event which may be exceptionally important in shaping a population. It has been found repeatedly in field studies that subpopulations of wind-dispersed fungal pathogens virulent on cultivars with newly introduced, effective resistance genes are dominated by one or very few genotypes. The role of propagule dispersal distributions with distinct behaviour at long distances in generating this characteristic population structure was studied by computer simulation of dispersal of clonal organisms in a heterogeneous environment with fields of unselective and selective hosts. Power-law distributions generated founder events in which new, virulent genotypes rapidly colonized fields of resistant crop varieties and subsequently dominated the pathogen population on both selective and unselective varieties, in agreement with data on rust and powdery mildew fungi. An exponential dispersal function, with extremely rare dispersal over long distances, resulted in slower colonization of resistant varieties by virulent pathogens or even no colonization if the distance between susceptible source and resistant target fields was sufficiently large. The founder events resulting from long-distance dispersal were highly stochastic and exact quantitative prediction of genotype frequencies will therefore always be difficult.
Resumo:
Multidrug-resistant (MDR-AmpC) Salmonella enterica serovar Newport has caused serious disease in animals and humans in North America, whereas in the UK S. enterica serovar Newport is not associated with severe disease and usually sensitive to antibiotics; MDR S. Newport (not AmpC) strains have only been isolated from poultry. We found that UK poultry strains belonged to MLST type ST166 and were distinct from cattle isolates for being able to utilize D-tagotose and when compared by pulsed-field gel electrophoresis (PFGE), comparative genomic hybridization (CGH) and diversity arrays technology (DArT). Cattle strains belonged to the ST45 complex differing from ST166 at all seven loci. PFGE showed that 19 out of 27 cattle isolates were more than 85% similar to each other and some UK and US strains were indistinguishable. Both CGH and DArT identified genes (including phage-related ones) that were uniquely present in the US isolates and two such genes identified by DArT showed sequence similarities with the pertussis-like (artAB) toxin. This work demonstrates that MDR-AmpC S. Newport from the USA are genetically closely related to pan-susceptible strains from the UK, but contained three extra phage regions and a MDR plasmid.
Resumo:
The aim of this study was to evaluate the ability of an Escherichia coli with the multiple antibiotic resistance (MAR) phenotype to withstand the stresses of slaughter compared to an isogenic progenitor strain. A wild type E. coli isolate (345-2RifC) of porcine origin was used to derive 3 isogenic MAR mutants. Escherichia coli 345-2RifC and its MAR derivatives were inoculated into separate groups of pigs. Once colonisation was established, the pigs were slaughtered and persistence of the E. coli strains in the abattoir environment and on the pig carcasses was monitored and compared. No significant difference (P>0.05) was detected between the shedding of the different E. coli strains from the live pigs. Both the parent strain and its MAR derivatives persisted in the abattoir environment, however the parent strain was recovered from 6 of the 13 locations sampled while the MAR derivatives were recovered from 11 of 13 and the number of MAR E. coil recovered was 10-fold higher than the parent strain at half of the locations. The parent strain was not recovered from any of the 6 chilled carcasses whereas the MAR derivatives were recovered from 3 out of 5 (P<0.001). This study demonstrates that the expression of MAR in 345-2RifC increased its ability to survive the stresses of the slaughter and chilling processes. Therefore in E. coli, MAR can give a selective advantage, compared to non-MAR strains, for persistence on chilled carcasses thereby facilitating transit of these strains through the food chain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The aims of this study were to determine whether strains of Salmonella enterica serovar Typhimurium which had acquired low-level multiple antibiotic resistance (MAR) through repeated exposure to farm disinfectants were able to colonize and transmit between chicks as easily as the parent strain and, if such strains were less susceptible to fluoroquinolones, would high-level resistance be selected after fluoroquinolone treatment. Methods: Two mutants were compared with the isogenic parent. In the first experiment, day-old chicks were co-infected with both the parent and a mutant to determine their relative fitness. In the second experiment, parent and mutant strains (in separate groups of chicks) were assessed for their ability to transmit from infected (contact) to non-infected (naive) birds and with respect to their susceptibility to fluoroquinolone treatment. Birds were regularly monitored for the presence of Salmonella in caecal contents. Replica plating was used to monitor for the selection of antibiotic-resistant strains. Results: The parent strain was shown to be significantly fitter than the two mutants and was more rapidly disseminated to naive birds. Antibiotic treatment did not preferentially select for the two mutants or for resistant strains. Conclusions: The disinfectant-exposed strains, although MAR, were less fit, less able to disseminate than the parent strain and were not preferentially selected by therapeutic antibiotic treatment. As such, these strains are unlikely to present a greater problem than other salmonellae in chickens.
Resumo:
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-To1C for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.
Resumo:
The incidence of antimicrobial resistance and expressed and unexpressed resistance genes among commensal Escherichia coli isolated from healthy farm animals at slaughter in Great Britain was investigated. The prevalence of antimicrobial resistance among the isolates varied according to the animal species; of 836 isolates from cattle tested only 5.7% were resistant to one or more antimicrobials, while only 3.0% of 836 isolates from sheep were resistant to one or more agents. However, 92.1% of 2480 isolates from pigs were resistant to at least one antimicrobial. Among isolates from pigs, resistance to some antimicrobials such as tetracycline (78.7%), sulphonamide (66.9%) and streptomycin (37.5%) was found to be common, but relatively rare to other agents such as amikacin (0.1%), ceftazidime ( 0.1%) and coamoxiclav (0.2%). The isolates had a diverse range of resistance gene profiles, with tet(B), sul2 and strAB identified most frequently. Seven out of 615 isolates investigated carried unexpressed resistance genes. One trimethoprim-susceptible isolate carried a complete dfrA17 gene but lacked a promoter for it. However, in the remaining six streptomycin-susceptible isolates, one of which carried strAB while the others carried aadA, no mutations or deletions in gene or promoter sequences were identified to account for susceptibility. The data indicate that antimicrobial resistance in E. coli of animal origin is due to a broad range of acquired genes.
Resumo:
A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also differed significantly in germination percentage, coleoptile length, shoot root length, shoot weight, root/shoot ratio and seed vigour index. However, shoot and root weights were non-significant. Significant interactions revealed that cultivars responded variably to osmotic stress treatments; hence provided better opportunity to select drought tolerant cultivars at seedling growth stages. The relative decrease over averages due to osmotic stress was 0.8 percent in seed germination, 53 percent in coleoptile length 62.9 percent in shoot length, 74.4 percent in root length, 50.6 percent in shoot weight, 45.1 percent in root weight, 30.2 percent in root/shoot ratio and 68.5 percent in seed vigour index. However, relative decrease of individual variety for various seedling traits could be more meaningful which indicated that cultivar TD-1 showed no reduction in coleoptile length, while minimum decline was noted in Anmol. For shoot length, cultivar Sarsabz expressed minimum reduction followed by Anmol. However, cultivars Anmol, Moomal, Inqalab-91, and Pavan gave almost equally lower reductions for root length suggesting their higher stress tolerance. In other words, cultivars Anmol, Moomal, Inqalab-91, Sarsabz, TD-1, ZA-77 and Pavan had relatively longer coleoptiles, shoots and roots, and were regarded as drought tolerant. Correlation coefficients among seedlings traits were significant and positive for all traits except germination percentage which had no significant correlation with any of other trait. The results indicated that increase in one trait may cause simultaneous increase in other traits; hence selection for any of these seedling attributes will lead to develop drought tolerant wheat cultivars.
Resumo:
Denaturing high-performance liquid chromatography (DHPLC) was evaluated as a rapid screening and identification method for DNA sequence variation detection in the quinolone resistance-determining region of gyrA from Salmonella serovars. A total of 203 isolates of Salmonella were screened using this method. DHPLC analysis of 14 isolates representing each type of novel or multiple mutations and the wild type were compared with LightCycler-based PCR-gyrA hybridization mutation assay (GAMA) and single-strand conformational polymorphism (SSCP) analyses. The 14 isolates gave seven different SSCP patterns, and LightCycler detected four different mutations. DHPLC detected 11 DNA sequence variants at eight different codons, including those detected by LightCycler or SSCP. One of these mutations was silent. Five isolates contained multiple mutations, and four of these could be distinguished from the composite sequence variants by their DHPLC profile. Seven novel mutations were identified at five different loci not previously described in quinolone-resistant salmonella. DHPLC analysis proved advantageous for the detection of novel and multiple mutations. DHPLC also provides a rapid, high-throughput alternative to LightCycler and SSCP for screening frequently occurring mutations.