96 resultados para quantitative proteomics
Resumo:
The assumption that negligible work is involved in the formation of new surfaces in the machining of ductile metals, is re-examined in the light of both current Finite Element Method (FEM) simulations of cutting and modern ductile fracture mechanics. The work associated with separation criteria in FEM models is shown to be in the kJ/m2 range rather than the few J/m2 of the surface energy (surface tension) employed by Shaw in his pioneering study of 1954 following which consideration of surface work has been omitted from analyses of metal cutting. The much greater values of surface specific work are not surprising in terms of ductile fracture mechanics where kJ/m2 values of fracture toughness are typical of the ductile metals involved in machining studies. This paper shows that when even the simple Ernst–Merchant analysis is generalised to include significant surface work, many of the experimental observations for which traditional ‘plasticity and friction only’ analyses seem to have no quantitative explanation, are now given meaning. In particular, the primary shear plane angle φ becomes material-dependent. The experimental increase of φ up to a saturated level, as the uncut chip thickness is increased, is predicted. The positive intercepts found in plots of cutting force vs. depth of cut, and in plots of force resolved along the primary shear plane vs. area of shear plane, are shown to be measures of the specific surface work. It is demonstrated that neglect of these intercepts in cutting analyses is the reason why anomalously high values of shear yield stress are derived at those very small uncut chip thicknesses at which the so-called size effect becomes evident. The material toughness/strength ratio, combined with the depth of cut to form a non-dimensional parameter, is shown to control ductile cutting mechanics. The toughness/strength ratio of a given material will change with rate, temperature, and thermomechanical treatment and the influence of such changes, together with changes in depth of cut, on the character of machining is discussed. Strength or hardness alone is insufficient to describe machining. The failure of the Ernst–Merchant theory seems less to do with problems of uniqueness and the validity of minimum work, and more to do with the problem not being properly posed. The new analysis compares favourably and consistently with the wide body of experimental results available in the literature. Why considerable progress in the understanding of metal cutting has been achieved without reference to significant surface work is also discussed.
Resumo:
Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.
Resumo:
Information technology in construction (ITC) has been gaining wide acceptance and is being implemented in the construction research domains as a tool to assist decision makers. Most of the research into visualization technologies (VT) has been on the wide range of 3D and simulation applications suitable for construction processes. Despite its development with interoperability and standardization of products, VT usage has remained very low when it comes to communicating and addressing the needs of building end-users (BEU). This paper argues that building end users are a source of experience and expertise that can be brought into the briefing stage for the evaluation of design proposals. It also suggests that the end user is a source of new ideas promoting innovation. In this research a positivistic methodology that includes the comparison of 3D models and the traditional 2D methods is proposed. It will help to identify "how much", if anything, a non-spatial specialist can gain in terms Of "understanding" of a particular design proposal presented, using both methods.
Resumo:
Pulsed Phase Thermography (PPT) has been proven effective on depth retrieval of flat-bottomed holes in different materials such as plastics and aluminum. In PPT, amplitude and phase delay signatures are available following data acquisition (carried out in a similar way as in classical Pulsed Thermography), by applying a transformation algorithm such as the Fourier Transform (FT) on thermal profiles. The authors have recently presented an extended review on PPT theory, including a new inversion technique for depth retrieval by correlating the depth with the blind frequency fb (frequency at which a defect produce enough phase contrast to be detected). An automatic defect depth retrieval algorithm had also been proposed, evidencing PPT capabilities as a practical inversion technique. In addition, the use of normalized parameters to account for defect size variation as well as depth retrieval from complex shape composites (GFRP and CFRP) are currently under investigation. In this paper, steel plates containing flat-bottomed holes at different depths (from 1 to 4.5 mm) are tested by quantitative PPT. Least squares regression results show excellent agreement between depth and the inverse square root blind frequency, which can be used for depth inversion. Experimental results on steel plates with simulated corrosion are presented as well. It is worth noting that results are improved by performing PPT on reconstructed (synthetic) rather than on raw thermal data.
Resumo:
Prebiotics are nondigestible carbohydrates that beneficially affect the host by selectively stimulating the growth and/or activity of one, or a limited number of, bacteria present in the colon. The selected genera should have the capacity to improve host health (e.g. Bifidobacterium, Lactobacillus). To help identify preferred types, for inclusion into the diet, a quantitative equation [measure of the prebiotic effect (MPE)] is suggested. This will help evaluate, in vitro, the fermentation of dietary carbohydrates and compare their prebiotic effect. Although the approach is not meant to define health values, it is formulated to better inform the choice of prebiotic. It therefore, compares measurements of bacterial changes through the determination of maximum growth rates of predominant groups present in faeces, rate of substrate assimilation and the production of lactic, acetic, propionic and butyric acids. The equation will allow further in vitro comparisons of MPE, leading towards further studies (e.g. in humans) to determine the success of dietary intervention. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Fluorophos and colourimetric procedures for alkaline phosphatase (ALP) testing were compared using milk with raw milk additions, purified bovine ALP additions and heat treatments. Repeatability was between 0.9% and 10.1% for Fluorophos, 3.5% and 46.1% for the Aschaffenburg and Mullen (A&M) procedure and 4.4% and 8.8% for the Scharer rapid test. Linearity (R-2) using raw milk addition was 0.96 between Fluorophos and the Scharer procedure. Between the Fluorophos and the A&M procedures, R-2 values were 0.98, 0.99 and 0.98 for raw milk additions, bovine ALP additions and heat treatments respectively. Fluorophos showed greater sensitivity and was both faster and simpler to perform.
Resumo:
Aims: To develop a quantitative equation [prebiotic index ( PI)] to aid the analysis of prebiotic fermentation of commercially available and novel prebiotic carbohydrates in vitro, using previously published fermentation data. Methods: The PI equation is based on the changes in key bacterial groups during fermentation. The bacterial groups incorporated into this PI equation were bifidobacteria, lactobacilli, clostridia and bacteroides. The changes in these bacterial groups from previous studies were entered into the PI equation in order to determine a quantitative PI score. PI scores were than compared with the qualitative conclusions made in these publications. In general the PI scores agreed with the qualitative conclusions drawn and provided a quantitative measure. Conclusions: The PI allows the magnitude of prebiotic effects to be quantified rather than evaluations being solely qualitative. Significance and Impact of the Study: The PI equation may be of great use in quantifying prebiotic effects in vitro. It is expected that this will facilitate more rational food product development and the development of more potent prebiotics with activity at lower doses.
Resumo:
The completion of the Human Genome Project has revealed a multitude of potential avenues for the identification of therapeutic targets. Extensive sequence information enables the identification of novel genes but does not facilitate a thorough understanding of how changes in gene expression control the molecular mechanisms underlying the development and regulation of a cell or the progression of disease. Proteomics encompasses the study of proteins expressed by a population of cells, and evaluates changes in protein expression, post-translational modifications, protein interactions, protein structure and splice variants, all of which are imperative for a complete understanding of protein function within the cell. From the outset, proteomics has been used to compare the protein profiles of cells in healthy and diseased states and as such can be used to identify proteins associated with disease development and progression. These candidate proteins might provide novel targets for new therapeutic agents or aid the development of assays for disease biomarkers. This review provides an overview of the current proteomic techniques available and focuses on their application in the search for novel therapeutic targets for the treatment of disease.
Resumo:
An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The self-consistent field theory (SCFT) prediction for the compression force between two semi-dilute polymer brushes is compared to the benchmark experiments of Taunton et al. [Nature, 1988, 332, 712]. The comparison is done with previously established parameters, and without any fitting parameters whatsoever. The SCFT provides a significant quantitative improvement over the classical strong-stretching theory (SST), yielding excellent quantitative agreement with the experiment. Contrary to earlier suggestions, chain fluctuations cannot be ignored for normal experimental conditions. Although the analytical expressions of SST provide invaluable aids to understanding the qualitative behavior of polymeric brushes, the numerical SCFT is necessary in order to provide quantitatively accurate predictions.
Resumo:
Whilst there is increasing evidence tht the outcome of the interation between a pathogen and a host is dependent on protein-protein interactions, very little information is available on in planta proteomics of biotrophic plant pathogens. Here a proteogenomic approach has been employed to supplement the annotation of the recently sequenced genome and to cast light on the biology of the infection process of the economically important barley powdery mildew pathogen, Blumeria graminis f.sp hordei
Resumo:
Importance of biomarker discovery in men’s cancer diagnosis and prognosis Each year around 10,000 men in the UK die as a result of prostate cancer (PCa) making it the 3rd most common cancer behind lung and breast cancer; worldwide more than 670,000 men are diagnosed every year with the disease [1]. Current methods of diagnosis of PCa mainly rely on the detection of elevated prostate-specific antigen (PSA) levels in serum and/or physical examination by a doctor for the detection of an abnormal prostate. PSA is a glycoprotein produced almost exclusively by the epithelial cells of the prostate gland [2]. Its role is not fully understood, although it is known that it forms part of the ejaculate and its function is to solubilise the sperm to give them the mobility to swim. Raised PSA levels in serum are thought to be due to both an increased production of PSA from the proliferated prostate cells, and a diminished architecture of affected cells, allowing an easier distribution of PSA into the wider circulatory system.
Resumo:
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin- was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.