87 resultados para protein tyrosine kinase C


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The regulation of platelet function by pharmacological agents that modulate platelet signaling haspharmacolo proven a successful approach to the prevention of thrombosis. A variety of molecules present in the diet have been shown to inhibit platelet activation, including the antioxidant quercetin. Objectives: In this report we investigate the molecular mechanisms through which quercetin inhibits collagen-stimulated platelet aggregation. Methods: The effect of quercetin on platelet aggregation, intracellular calcium release, whole cell tyrosine phosphorylation and intracellular signaling events including tyrosine phosphorylation and kinase activity of proteins involved in the collagen-stimulated glycoprotein (GP) signaling pathway were investigated. Results: We report that quercetin inhibits collagen-stimulated whole cell protein tyrosine phosphorylation and intracellular mobilization of calcium, in a concentration-dependent manner. Quercetin was also found to inhibit various events in signaling generated by the collagen receptor GPVI. This includes collagen-stimulated tyrosine phosphorylation of the Fc receptor gamma-chain, Syk, LAT and phospholipase Cgamma2. Inhibition of phosphorylation of the Fc receptor gamma-chain suggests that quercetin inhibits early signaling events following stimulation of platelets with collagen. The activity of the kinases that phosphorylate the Fc receptor gamma-chain, Fyn and Lyn, as well as the tyrosine kinase Syk and phosphoinositide 3-kinase was also inhibited by quercetin in a concentration-dependent manner, both in whole cells and in isolation. Conclusions: The present results provide a molecular basis for the inhibition by quercetin of collagen-stimulated platelet activation, through inhibition of multiple components of the GPVI signaling pathway, and may begin to explain the proposed health benefits of high quercetin intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a short communication in this issue (Manser et al. 2012), Christopher Miller’s group at the Institute of Psychiatry, King’s College London present an elegant and convincing set of experiments using molecular techniques to show that a brain-enriched membrane-associated protein kinase, lemur tyrosine kinase-2 (LMTK2), is directly phosphorylated by the cyclin-dependent kinase-5/p35 and this event is sufficient for LMTK2 to phosphorylate an abundant protein phosphatase, PP1C. LMTK2 has been little studied to date and, despite its name, is a kinase which phosphorylates serine or threonine residues of protein substrates. The paper adds to the evidence that this enzyme is a potentially important mediator positioned to integrate a number of intracellular signalling pathways relevant to neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since megakaryocytes are the cellular precursors of platelets we have investigated whether they share responses to platelet agonists, in particular collagen. Although previous studies have reported responses to thrombin in non-human megakaryocytes, through studies of single cell calcium responses and protein tyrosine-phosphorylation we demonstrate for the first time that both isolated human megakaryocytes and CD41/61-positive megakaryocytes derived in culture from CD34+ cells share responses to the platelet agonists collagen, collagen-related peptide and thrombin. The responses to either collagen or CRP were seen only in the most mature megakaryocytes and not in megakaryocyte-like cell lines, suggesting that the response to collagen is a characteristic developed late during megakaryocyte differentiation. These primary cells offer the opportunity to use many molecular and cellular techniques to study and manipulate signalling events in response to platelet receptor agonists, which cannot be performed in the small, anucleate platelet itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is extensive evidence to show that phosphatidylinositol 3-kinase plays an important role in signaling by the immune family of receptors, which has recently been extended to include the platelet collagen receptor, glycoprotein VI. In this report we present two potential mechanisms for the regulation of this enzyme on stimulation of platelets by collagen. We show that on stimulation with collagen, the regulatory subunit of phosphatidylinositol 3-kinase associates with the tyrosine-phosphorylated form of the adapter protein linker for activator of T Cells (LAT) and the tyrosine-phosphorylated immunoreceptor tyrosine-based activation motif of the Fc receptor gamma-chain (a component of the collagen receptor complex that includes glycoprotein VI). The associations of the Fc receptor gamma-chain and LAT with p85 are rapid and supported by the Src-homology 2 domains of the regulatory subunit. We did not obtain evidence to support previous observations that the regulatory subunit of phosphatidylinositol 3-kinase is regulated through association with the tyrosine kinase Syk. The present results provide a molecular basis for the regulation of the p85/110 form of phosphatidylinositol 3-kinase by GPVI, the collagen receptor that underlies activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutathione-S-transferase (GST)-Grb2 fusion proteins have been used to identify the potential role of Grb2-binding proteins in platelet activation by the platelet low-affinity IgG receptor, Fc gamma RIIA. Two tyrosine phosphoproteins of 38 and 63 kD bind to the SH2 domain of Grb2 following Fc gamma RIIA stimulation of platelets. Both are located in the particulate fraction following platelet activation and are also able to bind to a GST-construct containing the SH2 and SH3 domains of phospholipase C gamma 1. p38 also forms a complex with the tyrosine kinase csk in stimulated cells and is a substrate for the kinase. The SH3 domains of Grb2 form a stable complex with SOS1 and two proteins of 75 kD and 120 kD, which undergo tyrosine phosphorylation in Fc gamma RIIA stimulated cells. The 75-kD protein is recognized by antibodies to SLP-76, which has recently been isolated from T cells and sequenced. Tyrosine phosphorylation of p38 and p63 is also observed in platelets stimulated by the tyrosine kinase-linked receptor agonist collagen and by the G protein-coupled receptor agonist thrombin, although phosphorylation of SLP-76 is only observed in collagen-stimulated platelets. p38 and p63 may provide a docking site for Grb2, thereby linking Grb2 SH3-binding proteins SOS1, SLP-76, and p120 to downstream signalling events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid, DCA, taurolithocholic acid, TLCA) and the selective agonists oleanolic acid (OA) and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide (CCDC) stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, assessed by confocal microscopy. DCA, TLCA and OA did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, determined by bioluminescence resonance energy transfer. CCDC stimulated a low level of TGR5 interaction with β-arrestin2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of extracellular signal regulated kinase (ERK1/2). BRET analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation, and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the hematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable. In contrast, conditional deletion of Syk in other hematopoietic lineages had no effect on viability or brain vasculature and lymphatic development. We show that platelets, but not platelet releasate, modulate the migration and intercellular adhesion of lymphatic endothelial cells through a pathway that depends on CLEC-2 and Syk. These studies found that megakaryocyte/platelet expression of CLEC-2 and Syk is required for normal brain vasculature and lymphatic development and that platelet CLEC-2 and Syk directly modulate lymphatic endothelial cell behavior in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation. Methodology/Principal Findings In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor. Conclusions These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrin alpha(IIb)beta(3) plays a critical role in mediating clot retraction by platelets which is important in vivo in consolidating thrombus formation. Actin-myosin interaction is essential for clot retraction. In the present study, we demonstrate that the structurally distinct Src kinase inhibitors, PP2 and PD173952, significantly reduced the rate of clot retraction, but did not prevent it reaching completion. This effect was accompanied by abolition of alpha(IIb)beta(3)-dependent protein tyrosine phosphorylation, including PLCgamma2. A role for PLCgamma2 in mediating clot retraction was demonstrated using PLCgamma2-deficient murine platelets. Furthermore, platelet adhesion to fibrinogen leads to MLC phosphorylation through a pathway that is inhibited by PP2 and by the PLC inhibitor, U73122. These results demonstrate a partial role for Src kinase-dependent activation of PLCgamma2 and MLC phosphorylation in mediating clot retraction downstream of integrin alpha(IIb)beta(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physiological activator of protein kinase C (PKC), diacylglycerol, is formed by hydrolysis of phosphoinositides (PI) by phospholipase C (PLC) or phosphatidylcholine by phospholipase D (PLD). We have measured activation of these phospholipases by endothelin-1 (ET-1), bradykinin (BK), or phenylephrine (PE) in ventricular myocytes cultured from neonatal rat. The stimulation of PI hydrolysis after 10 min by 0.1 microM ET-1 (about 12-fold) was much greater than for BK or PE (each about four-fold), and did not correlate with translocation of nPKC delta or nPKC epsilon (Clerk A. Bogoyevitch MA. Andersson MB. Sugden PH, 1994. J Biol Chem 269: 32848-32857: Clerk A, Gillespie-Brown J, Fuller SJ, Sugden PH, 1996. Biochem J 317: 109-118). However, ET-1 and BK stimulated a similar rapid increase in [3H]InsP, formation (< 30 s), which was much greater than that seen with PE. This early phase correlated with PKC translocation. Acute or chronic exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) or treatment with Ro-31-8220 showed that the stimulation of PI hydrolysis by PE, but not ET-1 or BK, was inhibited by activation of PKC. Furthermore, ET-1 and BK heterologously desensitized the stimulation of PI hydrolysis by PE, ET-1 or BK homologously uncoupled their own receptors from [3H]InsP3 formation, but there was no evidence of heterologous desensitization with these two agonists. Anomalously, chronic exposure to TPA increased the stimulation of PI hydrolysis by BK, but this probably resulted from an increase in BK receptor density. PLD was also rapidly activated by TPA. ET-1, BK or PE. Experiments with Ro-31-8220 showed that the stimulation of PLD by ET-1 and BK was mediated through activation of PKC. We discuss the characteristics of the activation of PI hydrolysis and PLD by ET-1, BK, and PE with respect to the translocation of PKC.