61 resultados para pollen germination


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1  A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types. 2  Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust-trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust-trap samples contain much higher percentages of tree pollen than non-dust-trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust-trap samples by long-distance transport of exotic pollen is a serious problem. 3  The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non-arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non-forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture-bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources. 4  The different types of non-forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non-forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types. 5  The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non-forested areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomization method, which objectively assigns individual pollen assemblages to biomes ( Prentice et al., 1996 ), was tested using modern pollen data from Japan and applied to fossil pollen data to reconstruct palaeovegetation patterns 6000 and 18,000 14C yr bp Biomization started with the assignment of 135 pollen taxa to plant functional types (PFTs), and nine possible biomes were defined by specific combinations of PFTs. Biomes were correctly assigned to 54% of the 94 modern sites. Incorrect assignments occur near the altitudinal limits of individual biomes, where pollen transport from lower altitudes blurs the local pollen signals or continuous changes in species composition characterizes the range limits of biomes. As a result, the reconstructed changes in the altitudinal limits of biomes at 6000 and 18,000 14C yr bp are likely to be conservative estimates of the actual changes. The biome distribution at 6000 14C yr bp was rather similar to today, suggesting that changes in the bioclimate of Japan have been small since the mid-Holocene. At 18,000 14C yr bp the Japanese lowlands were covered by taiga and cool mixed forests. The southward expansion of these forests and the absence of broadleaved evergreen/warm mixed forests reflect a pronounced year-round cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north-eastern and south-western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid-Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr bp. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr bp was broadly similar to today, with little change in the northern forest limit, except for a possible northward advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr bp the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fossil pollen data supplemented by tree macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. Pollen spectra were assigned to biomes using the plant-functional-type method developed by Prentice et al. (1996). Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a comprehensive synopsis and firmer conclusions. West of the Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western Mongolia and north of the Aral Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

14C-dated pollen and lake-level data from Europe are used to assess the spatial patterns of climate change between 6000 yr BP and present, as simulated by the NCAR CCM1 (National Center for Atmospheric Research, Community Climate Model, version 1) in response to the change in the Earth’s orbital parameters during this perod. First, reconstructed 6000 yr BP values of bioclimate variables obtained from pollen and lake-level data with the constrained-analogue technique are compared with simulated values. Then a 6000 yr BP biome map obtained from pollen data with an objective biome reconstruction (biomization) technique is compared with BIOME model results derived from the same simulation. Data and simulations agree in some features: warmer-than-present growing seasons in N and C Europe allowed forests to extend further north and to higher elevations than today, and warmer winters in C and E Europe prevented boreal conifers from spreading west. More generally, however, the agreement is poor. Predominantly deciduous forest types in Fennoscandia imply warmer winters than the model allows. The model fails to simulate winters cold enough, or summers wet enough, to allow temperate deciduous forests their former extended distribution in S Europe, and it incorrectly simulates a much expanded area of steppe vegetation in SE Europe. Similar errors have also been noted in numerous 6000 yr BP simulations with prescribed modern sea surface temperatures. These errors are evidently not resolved by the inclusion of interactive sea-surface conditions in the CCM1. Accurate representation of mid-Holocene climates in Europe may require the inclusion of dynamical ocean–atmosphere and/or vegetation–atmosphere interactions that most palaeoclimate model simulations have so far disregarded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New compilations of African pollen and lake data are compared with climate (CCM1, NCAR, Boulder) and vegetation (BIOME 1.2, GSG, Lund) simulations for the last glacial maximum (LGM) and early to mid-Holocene (EMH). The simulated LGM climate was ca 4°C colder and drier than present, with maximum reduction in precipitation in semi-arid regions. Biome simulations show lowering of montane vegetation belts and expansion of southern xerophytic associations, but no change in the distribution of deserts and tropical rain forests. The lakes show LGM conditions similar or drier than present throughout northern and tropical Africa. Pollen data indicate lowering of montane vegetation belts, the stability of the Sahara, and a reduction of rain forest. The paleoenvironmental data are consistent with the simulated changes in temperature and moisture budgets, although they suggest the climate model underestimates equatorial aridity. EMH simulations show temperatures slightly less than present and increased monsoonal precipitation in the eastern Sahara and East Africa. Biome simulations show an upward shift of montane vegetation belts, fragmentation of xerophytic vegetation in southern Africa, and a major northward shift of the southern margin of the eastern Sahara. The lakes indicate conditions wetter than present across northern Africa. Pollen data show an upward shift of the montane forests, the northward shift of the southern margin of the Sahara, and a major extension of tropical rain forest. The lake and pollen data confirm monsoon expansion in eastern Africa, but the climate model fails to simulate the wet conditions in western Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed dormancy induction and alleviation in the winter-flowering moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. Outdoor and laboratory experiments simulating different seasonal temperatures, seasonal durations, and temperature fluctuations; the presence of light during different seasons; and intermittent drying (during the summer period) over several ‘years’ investigated the importance of these factors in germination. Warm summer-like temperatures (20°C) were necessary for germination at subsequent cooler autumn-like temperatures (greatest at 15°C in G. nivalis and 10°C in N. pseudonarcissus). As the warm temperature duration increased so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5°C cooler. In summary, continuous hydration of seeds of both species during warm summer-like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis), and desiccation (N. pseudonarcissus) increase dormancy while light inhibits germination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile environment. The system can be assembled in 1-2 minutes, costs approximately 8.78$ per plant, is almost entirely reusable (0.43$ per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants (Brassica rapa). Germination rates were close to those expected for optimal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved understanding of present-day climate variability and change relies on high-quality data sets from the past 2 millennia. Global efforts to model regional climate modes are in the process of being validated against, and integrated with, records of past vegetation change. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to an absence of information on the spatial and temporal coverage of study sites. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last 2 millennia. We identify 60 vegetation (pollen) records from across South America which satisfy geochronological requirements set out for climate modelling, and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local-scale responses to climate modes; thus, it is necessary to understand how vegetation–climate interactions might diverge under variable settings. We provide a qualitative translation from pollen metrics to climate variables. Additionally, pollen is an excellent indicator of human impact through time. We discuss evidence for human land use in pollen records and provide an overview considered useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. This manuscript forms part of the wider LOng-Term multi-proxy climate REconstructions and Dynamics in South America – 2k initiative that provides the ideal framework for the integration of the various palaeoclimatic subdisciplines and palaeo-science, thereby jump-starting and fostering multidisciplinary research into environmental change on centennial and millennial timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature germination of resting spores as a means of protecting brassica crops from Plasmodiphora brassicae Wor., (Clubroot). Crop Protection. Clubroot disease causes substantial yield and quality losses in broadacre oil seed and intensive vegetable brassica crops worldwide. The causal microbe Plasmodiophora brassicae Wor., perennates as soil-borne dormant resting spores. Their germination is triggered by exudates from host roots. A valuable addition to sustainable integrated control strategies could be developed by identifying and synthesising the molecules responsible for stimulating resting spore germination. This paper reports experiments in which stimulatory exudates were collected from brassica roots following exposure to infective stages of P. brassicae. Analyses identified a germination signalling molecule of circa 1 kDa formed of glucose sub-units. Mass spectral analyses showed this to be a complex hexasaccharide carbohydrate with structural similarities to the components of plant cell walls. This is the first report of a host generated hexasaccharide which is capable of stimulating the germination of resting spores of P. brassicae. The implications for environmentally benign control of clubroot are discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of thewarmestmonth (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai–Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimumand range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived fromoutside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai–Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.