90 resultados para platelet counts
Resumo:
Previously we demonstrated that heparin administration during carotid endarterectomy (CEA) caused a marked, but transient increase in platelet aggregation to arachidonic acid (AA) and adenosine diphosphate (ADP), despite effective platelet cyclo-oxygenase-1 (COX-1) inhibition with aspirin. Here we investigated the metabolism of AA via platelet 12-lipoxygenase (12-LOX) as a possible mediator of the observed transient aspirin resistance, and compared the effects of unfractionated (UFH) and low-molecular-weight (LMWH) heparin. A total of 43 aspirinated patients undergoing CEA were randomised in the trial to 5,000 IU UFH (n=22) or 2,500 IU LMWH (dalteparin, n=21). Platelet aggregation to AA (4x10⁻³) and ADP (3x10⁻⁶) was determined, and the products of the COX-1 and 12-LOX pathways; thromboxane B₂ (TXB₂) and 12-hydroxyeicosatretraenoic acid (12-HETE) were measured in plasma, and in material released from aggregating platelets.Aggregation to AA increased significantly (~10-fold) following heparinisation (p<0.0001), irrespective of heparin type (p=0.33). Significant, but smaller (~2-fold) increases in aggregation to ADP were also seen, which were significantly lower in the platelets of patients randomised to LMWH (p<0.0001). Plasma levels of TxB2 did not rise following heparinisation (p=0.93), but 12-HETE increased significantly in the patients' plasma, and released from platelets stimulated in vitro withADP, with both heparin types (p<0.0001). The magnitude of aggregation to ADP correlated with 12-HETE generation (p=0.03). Heparin administration during CEA generates AA that is metabolised to 12-HETE via the 12-LOX pathway, possibly explaining the phenomenon of transient heparin-induced platelet activation. LMWH has less effect on aggregation and 12-HETE generation than UFH when the platelets are stimulated with ADP.
Resumo:
Within the healthy population, there is substantial, heritable, and interindividual variability in the platelet response. We explored whether a proportion of this variability could be accounted for by interindividual variation in gene expression. Through a correlative analysis of genome-wide platelet RNA expression data from 37 subjects representing the normal range of platelet responsiveness within a cohort of 500 subjects, we identified 63 genes in which transcript levels correlated with variation in the platelet response to adenosine diphosphate and/or the collagen-mimetic peptide, cross-linked collagen-related peptide. Many of these encode proteins with no reported function in platelets. An association study of 6 of the 63 genes in 4235 cases and 6379 controls showed a putative association with myocardial infarction for COMMD7 (COMM domain-containing protein 7) and a major deviation from the null hypo thesis for LRRFIP1 [leucine-rich repeat (in FLII) interacting protein 1]. Morpholino-based silencing in Danio rerio identified a modest role for commd7 and a significant effect for lrrfip1 as positive regulators of thrombus formation. Proteomic analysis of human platelet LRRFIP1-interacting proteins indicated that LRRFIP1 functions as a component of the platelet cytoskeleton, where it interacts with the actin-remodeling proteins Flightless-1 and Drebrin. Taken together, these data reveal novel proteins regulating the platelet response.
Apheresis donors and platelet function: inherent platelet responsiveness influences platelet quality
Resumo:
BACKGROUND: Process-induced platelet (PLT) activation occurs with all production methods, including apheresis. Recent studies have highlighted the range and consistence of interindividual variation in the PLT response, but little is known about the contribution of a donors' inherent PLT responsiveness to the activation state of the apheresis PLTs or the effect of frequent apheresis on donors' PLTs. STUDY DESIGN AND METHODS: The relationship between the donors' PLT response on the apheresis PLTs was studied in 47 individuals selected as having PLTs with inherently low, intermediate, or high responsiveness. Whole-blood flow cytometry was used to measure PLT activation (levels of bound fibrinogen) before donation and in the apheresis PLTs. The effects of regular apheresis on the activation status of donors' PLTs were studied by comparing the in vivo activation status of PLTs from apheresis (n = 349) and whole-blood donors (n = 157), before donation. The effect of apheresis per se on PLT activation was measured in 10 apheresis donors before and after donation. RESULTS: The level of PLT activation in the apheresis packs was generally higher than in the donor, and the most activated PLTs were from high-responder donors. There was no significant difference in PLT activation before donation between the apheresis and whole-blood donors (p = 0.697), and there was no consistent evidence of activation in the donors immediately after apheresis. CONCLUSION: The most activated apheresis PLTs were obtained from donors with more responsive PLTs. Regular apheresis, however, does not lead to PLT activation in the donors.
Resumo:
BACKGROUND: Evidence suggests the wide variation in platelet response within the population is genetically controlled. Unraveling the complex relationship between sequence variation and platelet phenotype requires accurate and reproducible measurement of platelet response. OBJECTIVE: To develop a methodology suitable for measuring signaling pathway-specific platelet phenotype, to use this to measure platelet response in a large cohort, and to demonstrate the effect size of sequence variation in a relevant model gene. METHODS: Three established platelet assays were evaluated: mobilization of [Ca(2+)](i), aggregometry and flow cytometry, each in response to adenosine 5'-diphosphate (ADP) or the glycoprotein (GP) VI-specific crosslinked collagen-related peptide (CRP). Flow cytometric measurement of fibrinogen binding and P-selectin expression in response to a single, intermediate dose of each agonist gave the best combination of reproducibility and inter-individual variability and was used to measure the platelet response in 506 healthy volunteers. Pathway specificity was ensured by blocking the main subsidiary signaling pathways. RESULTS: Individuals were identified who were hypo- or hyper-responders for both pathways, or who had differential responses to the two agonists, or between outcomes. 89 individuals, retested three months later using the same methodology, showed high concordance between the two visits in all four assays (r(2) = 0.872, 0.868, 0.766 and 0.549); all subjects retaining their phenotype at recall. The effect of sequence variation at the GP6 locus accounted for approximately 35% of the variation in the CRP-XL response. CONCLUSION: Genotyping-phenotype association studies in a well-characterized, large cohort provides a powerful strategy to measure the effect of sequence variation in genes regulating the platelet response.
Resumo:
BACKGROUND AND PURPOSE: We have previously shown that a single 75-mg tablet of clopidogrel, taken before carotid endarterectomy, significantly reduces postoperative embolization, a marker of thromboembolic stroke. This study explores the antiplatelet effect of this submaximal dose. METHODS: Fifty-six patients on long-term aspirin (150 mg) were randomized to 75 mg clopidogrel or placebo before carotid endarterectomy. Blood samples were taken pre- and postdrug administration and at the end of surgery to measure platelet activation and adenosine diphosphate (ADP) response by flow cytometry and aggregometry. RESULTS: Surgery produced a significant rise in platelet activation in vivo as evidenced by a rise in the percentage of monocyte-platelet aggregates in patients given placebo, but this was not seen in patients receiving clopidogrel. Before surgery, clopidogrel produced a significant reduction in the platelet response to ADP; for example, with 10(-6)M ADP, 77.32+/-2.3% bound fibrinogen in placebo group compared with 67.16+/-3.1% after clopidogrel (P=0.01). This was accentuated after surgery when the percentage of platelets binding fibrinogen in response to ADP was 76.53+/-2.2% in patients given placebo and 62.84+/-3.3% in the clopidogrel group (P=0.002). Similar differences were seen over a range of ADP concentrations and by aggregometry. Platelet responsiveness before treatment was highly variable and was positively correlated with the inhibitory effect of clopidogrel; patients with the highest baseline response to ADP showed the greatest response to clopidogrel. A negative correlation was seen between the effect of clopidogrel and patients' weight (r=0.57; P=0.002). CONCLUSIONS: These results explain how a single 75-mg dose of clopidogrel produces a significant clinical impact on embolization.
Resumo:
CONTEXT: The link between long-haul air travel and venous thromboembolism is the subject of continuing debate. It remains unclear whether the reduced cabin pressure and oxygen tension in the airplane cabin create an increased risk compared with seated immobility at ground level. OBJECTIVE: To determine whether hypobaric hypoxia, which may be encountered during air travel, activates hemostasis. DESIGN, SETTING, AND PARTICIPANTS: A single-blind, crossover study, performed in a hypobaric chamber, to assess the effect of an 8-hour seated exposure to hypobaric hypoxia on hemostasis in 73 healthy volunteers, which was conducted in the United Kingdom from September 2003 to November 2005. Participants were screened for factor V Leiden G1691A and prothrombin G20210A mutation and were excluded if they tested positive. Blood was drawn before and after exposure to assess activation of hemostasis. INTERVENTIONS: Individuals were exposed alternately (> or =1 week apart) to hypobaric hypoxia, similar to the conditions of reduced cabin pressure during commercial air travel (equivalent to atmospheric pressure at an altitude of 2438 m), and normobaric normoxia (control condition; equivalent to atmospheric conditions at ground level, circa 70 m above sea level). MAIN OUTCOME MEASURES: Comparative changes in markers of coagulation activation, fibrinolysis, platelet activation, and endothelial cell activation. RESULTS: Changes were observed in some hemostatic markers during the normobaric exposure, attributed to prolonged sitting and circadian variation. However, there were no significant differences between the changes in the hypobaric and the normobaric exposures. For example, the median difference in change between the hypobaric and normobaric exposure was 0 ng/mL for thrombin-antithrombin complex (95% CI, -0.30 to 0.30 ng/mL); -0.02 [corrected] nmol/L for prothrombin fragment 1 + 2 (95% CI, -0.03 to 0.01 nmol/L); 1.38 ng/mL for D-dimer (95% CI, -3.63 to 9.72 ng/mL); and -2.00% for endogenous thrombin potential (95% CI, -4.00% to 1.00%). CONCLUSION: Our findings do not support the hypothesis that hypobaric hypoxia, of the degree that might be encountered during long-haul air travel, is associated with prothrombotic alterations in the hemostatic system in healthy individuals at low risk of venous thromboembolism.
Resumo:
OBJECTIVES: Aspirin therapy is usually continued throughout the perioperative period to reduce the risk for thromboembolic stroke and myocardial infarction after carotid endarterectomy (CEA). Aspirin irreversibly binds cyclooxygenase-1, thereby reducing platelet aggregation for the lifetime of each platelet. However, recent research from this unit has shown that aggregation in response to arachidonic acid increases significantly, but transiently, during CEA, which suggests that the anti-platelet effect of aspirin is temporarily reversed. The purpose of the current study was to determine when this phenomenon occurs and to identify the possible mechanisms involved. METHODS: Platelet aggregation was measured in platelet-rich plasma from 41 patients undergoing CEA who were stabilized with 150 mg of aspirin daily. Blood was taken at 8 time points: before anesthesia, after anesthesia, before heparinization, 3 minutes after heparinization, 3 minutes after shunt insertion, 10 minutes after flow restoration, 4 hours postoperatively, and 24 hours postoperatively. Platelet aggregation was also measured at similar times in a group of 18 patients undergoing peripheral angioplasty without general anesthesia. RESULTS: All patient platelets were effectively inhibited by aspirin at the start of the operation. There was a significant intraoperative increase in platelet response to arachidonic acid in both groups of patients, which occurred within 3 minutes of administration of unfractionated heparin. In the CEA group this resulted in a greater than 10-fold increase in mean aggregation, to 5 mmol/L of arachidonic acid (5 mmol/L), rising from 3.9% +/- 2.2% preoperatively to 45.1% +/- 29.3% after administration of heparin ( P <.0001). This increased aggregation persisted into the early postoperative period, but by 24 hours post operation aggregation had returned to near preoperative values. Aggregation in response to other platelet agonists (adenosine diphosphate, thrombin receptor agonist peptide) showed only a small increase at the same time, which could be accounted for by a parallel increase in the level of spontaneous aggregation. CONCLUSION: Administration of heparin significantly increases platelet aggregation in response to arachidonic acid, despite adequate inhibition by aspirin administered preoperatively. This apparent reversal in anti-platelet activity persisted into the immediate early postoperative period, and could explain why a small proportion of patients are at increased risk for acute cardiovascular events after major vascular surgery, despite aspirin therapy.
Resumo:
OBJECTIVE: The goal of this study was to investigate the potential crosstalk between Rap1 and Rac1, 2 small GTPases central to platelet activation, particularly downstream of the collagen receptor GPVI. METHODS AND RESULTS: We compared the activation response of platelets with impaired Rap signaling (double knock-out; deficient in both the guanine nucleotide exchange factor, CalDAG-GEFI, and the Gi-coupled receptor for ADP, P2Y12), to that of wild-type platelets treated with a small-molecule Rac inhibitor, EHT 1864 (wild-type /EHT). We found that Rac1 is sequentially activated downstream of Rap1 on stimulation via GPVI. In return, Rac1 provides important feedback for both CalDAG-GEFI- and P2Y12-dependent activation of Rap1. When analyzing platelet responses controlled by Rac1, we observed (1) impaired lamellipodia formation, clot retraction, and granule release in both double knock-out and EHT 1864-treated wild-type platelets; and (2) reduced calcium store release in EHT 1864-treated wild-type but not double knock-out platelets. Consistent with the latter finding, we identified 2 pools of Rac1, one activated immediately downstream of GPVI and 1 activated downstream of Rap1. CONCLUSIONS: We demonstrate important crosstalk between Rap1 and Rac1 downstream of GPVI. Whereas Rap1 signaling directly controls sustained Rac1 activation, Rac1 affects CalDAG-GEFI- and P2Y12-dependent Rap1 activation via its role in calcium mobilization and granule/ADP release, respectively.
Resumo:
The importance of the second messengers calcium (Ca(2+)) and diacylglycerol (DAG) in platelet signal transduction was established more than 30 years ago. Whereas protein kinase C (PKC) family members were discovered as the targets of DAG, little is known about the molecular identity of the main Ca(2+) sensor(s). We here identify Ca(2+) and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) as a critical molecule in Ca(2+)-dependent platelet activation. CalDAG-GEFI, through activation of the small GTPase Rap1, directly triggers integrin activation and extracellular signal-regulated kinase-dependent thromboxane A(2) (TxA(2)) release. CalDAG-GEFI-dependent TxA(2) generation provides crucial feedback for PKC activation and granule release, particularly at threshold agonist concentrations. PKC/P2Y12 signaling in turn mediates a second wave of Rap1 activation, necessary for sustained platelet activation and thrombus stabilization. Our results lead to a revised model for platelet activation that establishes one molecule, CalDAG-GEFI, at the nexus of Ca(2+)-induced integrin activation, TxA(2) generation, and granule release. The preferential activation of CalDAG-GEFI over PKC downstream of phospholipase C activation, and the different kinetics of CalDAG-GEFI- and PKC/P2Y12-mediated Rap1 activation demonstrate an unexpected complexity to the platelet activation process, and they challenge the current model that DAG/PKC-dependent signaling events are crucial for the initiation of platelet adhesion.
Resumo:
Impaired healing is common in wounds infected with the major human pathogen Staphylococcus aureus, although the underlying mechanisms are poorly understood. Here, we show that S.aureus lipoteichoic acid (LTA) inhibits platelet aggregation caused by physiological agonists and S. aureus and reduced platelet thrombus formation in vitro. The presence of D-alanine on LTA is necessary for the full inhibitory effect. Inhibition of aggregation was blocked using a monoclonal anti-platelet activating factor receptor (PafR) antibody and Ginkgolide B, a well-defined PafR antagonist, demonstrating that the LTA inhibitory signal occurs via PafR. Using a cyclic AMP (cAMP) assay and a western blot for phosphorylated VASP, we determined that cAMP levels increase upon platelet incubation with LTA, an effect which inhibits platelet activation. This was blocked when platelets were preincubated with Ginkgolide B. Furthermore, LTA reduced haemostasis in a mouse tail-bleed assay.
Resumo:
Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. Weshow that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase–dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C g2. Inhibition of Syk, Ca21 mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase–dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.
Resumo:
The presence of multiple connexins was recently demonstrated in platelets, with notable expression of Cx37. Studies with Cx37-deficient mice and connexin inhibitors established roles for hemichannels and gap junctions in platelet function. It was uncertain, however, whether Cx37 functions alone or in collaboration with other family members through heteromeric interactions in regulation of platelet function. Here we report the presence and functions of an additional platelet connexin, Cx40. Inhibition of Cx40 in human platelets or its deletion in mice reduces platelet aggregation, fibrinogen binding, granule secretion and clot retraction. The effects of the Cx37 inhibitor 37,43Gap27 on Cx40-/- mouse platelets and of the Cx40 inhibitor 40Gap27 on Cx37-/- mouse platelets revealed that each connexin is able to function independently. Inhibition or deletion of Cx40 reduces haemostatic responses in mice, indicating the physiological importance of this protein in platelets. We conclude that multiple connexins are involved in regulating platelet function, thereby contributing to haemostasis and thrombosis.
Resumo:
OBJECTIVE: Dietary flavonoids have long been appreciated in reducing cardiovascular disease risk factors, but their mechanisms of action are complex in nature. In this study, the effects of tangeretin, a dietary flavonoid, were explored on platelet function, signaling, and hemostasis. APPROACH AND RESULTS: Tangeretin inhibited agonist-induced human platelet activation in a concentration-dependent manner. It inhibited agonist-induced integrin αIIbβ3 inside-out and outside-in signaling, intracellular calcium mobilization, and granule secretion. Tangeretin also inhibited human platelet adhesion and subsequent thrombus formation on collagen-coated surfaces under arterial flow conditions in vitro and reduced hemostasis in mice. Further characterization to explore the mechanism by which tangeretin inhibits platelet function revealed distinctive effects of platelet signaling. Tangeretin was found to inhibit phosphoinositide 3-kinase-mediated signaling and increase cGMP levels in platelets, although phosphodiesterase activity was unaffected. Consistent with increased cGMP levels, tangeretin increased the phosphorylation of vasodilator-stimulated phosphoprotein at S239. CONCLUSIONS: This study provides support for the ability and mechanisms of action of dietary flavonoids to modulate platelet signaling and function, which may affect the risk of thrombotic disease.
Resumo:
The complex relationship between flavonoid-based nutrition and cardiovascular disease may be dissected by understanding the activities of these compounds in biological systems. The aim of the present study was to explore a hierarchy for the importance of dietary flavonoids on cardiovascular health by examining the structural basis for inhibitory effects of common, dietary flavonoids (quercetin, apigenin, and naringenin) and the plasma metabolite, tamarixetin. Understanding flavonoid effects on platelets in vivo can be informed by investigations of the ability of these compounds to attenuate the function of these cells. Inhibition of platelet function in whole blood and plasma was structure-dependent. The order of potency was apigenin > tamarixetin > quercetin = naringenin indicating that in vivo, important functional groups are potentially a methylated B ring, and a non-hydroxylated, planar C ring. Apigenin and the methylated metabolite of quercetin, tamarixetin significantly reduced thrombus volume at concentrations (5 μM) that suggested their reported physiological levels (0.1-1 μM) may exert low levels of inhibition. Flavonoid interactions with erythrocytes, leukocytes and human serum albumin in whole blood reduce their inhibitory activities against platelet function. The diminished inhibitory activity of flavonoids that we observed in whole blood and plasma indicated that these interactions do not overcome the attenuating effects of these compounds. Furthermore, inhibition of platelet aggregation by flavonoids was enhanced with increases in exposure time, indicating the potential for measurable inhibitory effects during resident plasma times. We conclude that flavonoid structures may be a major influence of their activities in vivo with methylated metabolites and those of flavones being more potent than those of flavonols and flavanones.