128 resultados para partially coherent source
Resumo:
A radionuclide source term model has been developed which simulates the biogeochemical evolution of the Drigg low level waste (LLW) disposal site. The DRINK (DRIgg Near field Kinetic) model provides data regarding radionuclide concentrations in groundwater over a period of 100,000 years, which are used as input to assessment calculations for a groundwater pathway. The DRINK model also provides input to human intrusion and gaseous assessment calculations through simulation of the solid radionuclide inventory. These calculations are being used to support the Drigg post closure safety case. The DRINK model considers the coupled interaction of the effects of fluid flow, microbiology, corrosion, chemical reaction, sorption and radioactive decay. It represents the first direct use of a mechanistic reaction-transport model in risk assessment calculations.
Resumo:
Core-level photoelectron spectra, in excellent agreement with ab initio calculations, confirm that the stable wetting layer of water on Ru{0001} contains O-H and H2O in roughly 3:5 proportion, for OHx coverages between 0.25 and 0.7 ML, and T<170 K. Proton disorder explains why the wetting structure looks to low energy electron diffraction (LEED) to be an ordered p(root3xroot3)R30degrees adlayer, even though approximate to3/8 of its molecules are dissociated. Complete dissociation to atomic oxygen starts near 190 K. Low photon flux in the synchrotron experiments ensured that the diagnosis of the nature of the wetting structure quantified by LEED is free of beam-induced damage.
Resumo:
A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda = 662 nm and NO2 at lambda = 404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P similar to 5 Torr and T similar to 295 K. Values of the rate constants obtained were (k/10(-12) cm(3) molecule(-1) s(-1)): CH3O2 (1.1 +/- 0.5), C2H5O2 (2.3 +/- 0.7), CH2FO2 (1.4 +/- 0.9), CH2ClO2 (3.8(-2.6)(+1.4)), c-C5H9O2 (1.2(-0.5)(+1.1)), c-C6H11O2 (1.9 +/- 0.7), CF3O2 (0.62 +/- 0.17) and CF3CFO2CF3 (0.24 +/- 0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.
Resumo:
Results from both experimental measurements and 3D numerical simulations of Ground Source Heat Pump systems (GSHP) at a UK climate are presented. Experimental measurements of a horizontal-coupled slinky GSHP were undertaken in Talbot Cottage at Drayton St Leonard site, Oxfordshire, UK. The measured thermophysical properties of in situ soil were used in the CFD model. The thermal performance of slinky heat exchangers for the horizontal-coupled GSHP system for different coil diameters and slinky interval distances was investigated using a validated 3D model. Results from a two month period of monitoring the performance of the GSHP system showed that the COP decreased with the running time. The average COP of the horizontal-coupled GSHP was 2.5. The numerical prediction showed that there was no significant difference in the specific heat extraction of the slinky heat exchanger at different coil diameters. However, the larger the diameter of coil, the higher the heat extraction per meter length of soil. The specific heat extraction also increased, but the heat extraction per meter length of soil decreased with the increase of coil central interval distance.
Resumo:
In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.
Resumo:
Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available) it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.
Resumo:
Methods have recently been developed that make use of electromagnetic radiation at terahertz (THz) frequencies, the region of the spectrum between millimetre wavelengths and the infrared, for imaging purposes. Radiation at these wavelengths is non-ionizing and subject to far less Rayleigh scatter than visible or infrared wavelengths, making it suitable for medical applications. This paper introduces THz pulsed imaging and discusses its potential for in vivo medical applications in comparison with existing modalities.
Resumo:
A novel wide-band noise source for millimetre-wave spectrometry is described. It uses power combined Schottky diodes, reverse biased to avalanche breakdown, mounted in a wide-band tapered slot antenna. Power has been produced from 15 to 200 GHz with an equivalent temperature of 28200 K at 40 GHz.
Resumo:
A simple and coherent framework for partitioning uncertainty in multi-model climate ensembles is presented. The analysis of variance (ANOVA) is used to decompose a measure of total variation additively into scenario uncertainty, model uncertainty and internal variability. This approach requires fewer assumptions than existing methods and can be easily used to quantify uncertainty related to model-scenario interaction - the contribution to model uncertainty arising from the variation across scenarios of model deviations from the ensemble mean. Uncertainty in global mean surface air temperature is quantified as a function of lead time for a subset of the Coupled Model Intercomparison Project phase 3 ensemble and results largely agree with those published by other authors: scenario uncertainty dominates beyond 2050 and internal variability remains approximately constant over the 21st century. Both elements of model uncertainty, due to scenario-independent and scenario-dependent deviations from the ensemble mean, are found to increase with time. Estimates of model deviations that arise as by-products of the framework reveal significant differences between models that could lead to a deeper understanding of the sources of uncertainty in multi-model ensembles. For example, three models are shown diverging pattern over the 21st century, while another model exhibits an unusually large variation among its scenario-dependent deviations.
Resumo:
The goal of this study was to examine behavioral and electrophysiological correlates of involuntary orienting toward rapidly presented angry faces in non-anxious, healthy adults using a dot-probe task in conjunction with high-density event-related potentials and a distributed source localization technique. Consistent with previous studies, participants showed hypervigilance toward angry faces, as indexed by facilitated response time for validly cued probes following angry faces and an enhanced P1 component. An opposite pattern was found for happy faces suggesting that attention was directed toward the relatively more threatening stimuli within the visual field (neutral faces). Source localization of the P1 effect for angry faces indicated increased activity within the anterior cingulate cortex, possibly reflecting conflict experienced during invalidly cued trials. No modulation of the early C1 component was found for affect or spatial attention. Furthermore, the face-sensitive N170 was not modulated by emotional expression. Results suggest that the earliest modulation of spatial attention by face stimuli is manifested in the P1 component, and provide insights about mechanisms underlying attentional orienting toward cues of threat and social disapproval.
Resumo:
It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.