60 resultados para oxindole-Schiff bases
Resumo:
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.
Resumo:
The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.
Resumo:
Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.
Resumo:
Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.
Resumo:
Three new trinuclear heterometallic nickel(II)manganese(II) complexes, [(NiL)2Mn(NCS)2] (1), [(NiL)2Mn(NCO)2] (2), and [{NiL(EtOH)}2Mn(NO2)2]center dot 2EtOH (3), have been synthesized by using [NiL] as the so-called ligand complex [where H2L = N,N'-bis(salicylidene)-1,3-propanediamine] and have been structurally characterized. Crystal structure analyses revealed that complexes 1 and 2 are angular trinuclear species, in which two terminal four-coordinate square planar [NiL] moieties are coordinated to a central MnII through double phenoxido bridges. The MnII is in a six-coordinate distorted octahedral environment that is bonded additionally to two mutually cis nitrogen atoms of terminal thiocyanate (in 1) and cyanate (in 2). In complex 3, in addition to the double phenoxo bridge, the two terminal NiII ions are linked to the central MnII by means of a nitrite bridge (1?N:2?O) that, together with a coordinated ethanol molecule, gives rise to an octahedral environment around the NiII ions and consequently the structure becomes linear. Catecholase activity of these three complexes was examined by using 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. All three complexes mimic catecholase activity and the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first-order kinetics with respect to the catalyst. The EPR spectra of the complexes exhibit characteristic six line spectra, which indicate the presence of high-spin octahedral MnII species in solution state. The ESI-MS positive spectrum of 1 in the presence of 3,5-DTBC has been recorded to investigate possible complexsubstrate intermediates.
Resumo:
Two new nickel(11) complexes, [NiLL'(H2O)(2)Cl] (1) and [{NiLL'(H2O)](2)(mu-H)]NO3·H2O(2), have been synthesized using a tridentate Schiff base ligand, HL, 2-[(2-dimethylamino-ethylimino)-methyl]-phenol, along with Cl- or NO3(-) as an anionic co-ligand or counter anion (where L'H = salicylaldehyde). Both complexes have been characterized by X-ray crystallography. The structural analyses reveal that complex 1 is mononuclear whereas 2 is a hydrogen-bridged dinuclear complex. The Ni(II) ions possess a distorted octahedral geometry in both structures. Both complexes show negative solvatochromic behaviour with increasing donor number (DN) of the solvent. In more coordinating solvents, like DMSO or methanol, the colour of the solutions is green, whereas in less coordinating solvents, like dichloromethane (DCM) or acetonitrile, it is red.
Resumo:
Two phenoxido bridged dinuclear Cu(II) complexes, [Cu-2(L-1)(2)(NCNCN)(2)] (1) and [Cu-2(L-2)(2)(NCNCN)(2)]center dot 2H(2)O (2) have been synthesized using the tridentate reduced Schiff-base ligands 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL1) and 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL2), respectively. The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both the complexes present a diphenoxido bridging Cu2O2 core. The geometries around metal atoms are intermediate between trigonal bipyramid and square pyramid with the Addison parameters (tau) = 0.57 and 0.49 for 1 and 2, respectively. Within the core the Cu-O-Cu angles are 99.15 degrees and 103.51 degrees and average Cu-O bond distances are 2.036 and 1.978 angstrom for compounds 1 and 2, respectively. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -184.3 and -478.4 cm (1) for 1 and 2, respectively) differ appreciably.
Resumo:
Two new Fe-III complexes, [Fe2L2(mu-OMe)(2)(NCS)(2)] (1) and [Fe2L2(mu-N-3)(2)(N-3)(2)] (2), have been synthesized using a N,N,O-donor tridentate Schiff base ligand HL {2-[(2-dimethylaminoethylimino)methyl]phenol}, the condensation product of salicylaldehyde and N,N-dimethyl-1,2-diaminoethane. The complexes were characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Both crystal structures are centrosymmetric dimers containing two Fe-III atoms, which are bridged in compound 1 by two methoxy anions and in compound 2 by two mu-1,1-azides. The chelating tridentate Schiff base and a terminal thiocyanato (for 1) or azido (for 2) group complete the hexacoordination of the distorted octahedral environment of each iron center. The magnetic properties of compound 1 show the presence of antiferromagnetic exchange interactions mediated by double methoxy bridges (J = -29.45 cm(-1)). Compound 2 shows the presence of very weak ferromagnetic exchange interactions mediated by double mu-1,1-N-3 bridges (J = 1.08 cm(-1)).
Resumo:
A mononuclear octahedral nickel(II) complex [Ni(HL(1))(2)](SCN)(2) (1) and an unusual penta-nuclear complex [{(NiL(2))(mu-SCN)}(4)Ni(NCS)(2)]center dot 2CH(3)CN (2) where HL(1) = 3-(2-aminoethylimino)butan-2-one oxime and HL(2) = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL(1), was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL(2), was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.
Resumo:
Four new nickel(II) complexes, [Ni2L2(NO2)2]·CH2Cl2·C2H5OH, 2H2O (1), [Ni2L2(DMF)2(m-NO2)]ClO4·DMF (2a), [Ni2L2(DMF)2(m-NO2)]ClO4 (2b) and [Ni3L¢2(m3-NO2)2(CH2Cl2)]n·1.5H2O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H2L¢ = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL2]·2H2O, nickel(II) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, NiII ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-m2-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(m-nitrito-1kO:2kN) bridge is present in addition to the di-m2-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as m-nitrito-1kO:2kN bridged trinuclear units are linked through a very rare m3-nitrito-1kO:2kN:3kO¢ bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(II) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm-1 for 1, 2a, 2b and 3, respectively
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.
Resumo:
What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.