136 resultados para native vegetation
Resumo:
This study investigates the intonation of Chinese and Arabic learners of English using the computerized test battery Profiling Elements of Prosody for Speech and Communication (PEPS-C). The aims were to ascertain which aspects of intonation are difficult for these learners, and to determine whether PEPS-C can be used to assess the intonation of adult learners. Although some results were significantly different from native-speaker data, raw scores showed that the learner groups performed well in most tasks, which may indicate that the learners' level is too high for the PEPS-C to be useful. However, the PEPS-C did reveal that Arabic learners performed significantly worse at contrastive stress placement, and Chinese learners performed significantly worse assessing likes and dislikes.
Resumo:
In this article the authors argue that L1 transfer from English is not only important in the early stages of L2 acquisition of Spanish, but remains influential in later stages if there is not enough positive evidence for the learners to progress in their development (Lefebvre, White, & Jourdan, 2006). The findings are based on analyses of path and manner of movement in stories told by British students of Spanish (N = 68) of three different proficiency levels. Verbs that conflate motion and path, on the one hand, are mastered early, possibly because the existence of Latinate path verbs, such as enter and ascend in English, facilitate their early acquisition by British learners of Spanish. Contrary to the findings of Cadierno (2004) and Cadierno and Ruiz (2006), the encoding of manner, in particular in boundary crossing contexts, seems to pose enormous difficulties, even among students who had been abroad on a placement in a Spanish-speaking country prior to the data collection. An analysis of the frequency of manner verbs in Spanish corpora shows that one of the key reasons why students struggle with manner is that manner verbs are so infrequent in Spanish. The authors claim that scarce positive evidence in the language exposed to and little or no negative evidence are responsible for the long-lasting effect of transfer on the expression of manner.
Resumo:
BACKGROUND: The selective graminicide fluazifop-P-butyl is used for the control of grass weeds in dicotyledonous crops, and commonly applied in amenity areas to reduce grass productivity and promote wildflower establishment. However, evidence suggests that fluazifop-P-butylmight also have phytotoxic effects on somenon-target plants. This study investigates the effects of fluazifop-P-butyl on the emergence, phytotoxicity and above-ground biomass of nine perennial wildflower species and two grass species, following pre- and post-emergent applications at half, full and double label rates in a series of glasshouse experiments. RESULTS: While pre- and post-emergent applications of fluazifop-P-butyl caused reductions in seedling emergence and increased phytotoxicity on native wildflower and grass species, these effects were temporary for the majority of wildflower species tested, and generally only occurred at the double application rate. No differences in biomass were observed at any of the rates, suggesting good selectivity and no long-term effects of fluazifop-P-butyl application on the wildflower species from either pre-emergent or post-emergent applications. CONCLUSION: These results have direct relevance to the management of amenity areas for biodiversity, as they confirm the suitability of these wildflower species for inclusion in seed mixtures where fluazifop-P-butyl is to be applied to control grass productivity.
Resumo:
The magnitude and direction of the coupled feedbacks between the biotic and abiotic components of the terrestrial carbon cycle is a major source of uncertainty in coupled climate–carbon-cycle models1, 2, 3. Materially closed, energetically open biological systems continuously and simultaneously allow the two-way feedback loop between the biotic and abiotic components to take place4, 5, 6, 7, but so far have not been used to their full potential in ecological research, owing to the challenge of achieving sustainable model systems6, 7. We show that using materially closed soil–vegetation–atmosphere systems with pro rata carbon amounts for the main terrestrial carbon pools enables the establishment of conditions that balance plant carbon assimilation, and autotrophic and heterotrophic respiration fluxes over periods suitable to investigate short-term biotic carbon feedbacks. Using this approach, we tested an alternative way of assessing the impact of increased CO2 and temperature on biotic carbon feedbacks. The results show that without nutrient and water limitations, the short-term biotic responses could potentially buffer a temperature increase of 2.3 °C without significant positive feedbacks to atmospheric CO2. We argue that such closed-system research represents an important test-bed platform for model validation and parameterization of plant and soil biotic responses to environmental changes.
Resumo:
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Resumo:
Rats and mice have traditionally been considered one of the most important pests of sugarcane. However, "control" campaigns are rarely specific to the target species, and can have an effect on local wildlife, in particular non-pest rodent species. The objective of this study was to distinguish between rodent species that are pests and those that are not, and to identify patterns of food utilization by the rodents in the sugarcane crop complex. Within the crop complex, subsistence crops like maize, sorghum, rice, and bananas, which are grown alongside the sugarcane, are also subject to rodent damage. Six native rodent species were trapped in the Papaloapan River Basin of the State of Veracruz; the cotton rat (Sigmodon hispidus), the rice rat (Oryzomys couesi), the small rice rat (O. chapmani), the white footed mouse (Peromyscus leucopus), the golden mouse (Reithrodontomys sumichrasti), and the pigmy mouse (Baiomys musculus). In a stomach content analysis, the major food components for the cotton rat, the rice rat and the small rice rat were sugarcane (4.9 to 30.1 %), seed (2.7 to 22.9%), and vegetation (0.9 to 29.8%); while for the golden mouse and the pigmy mouse the stomach content was almost exclusively seed (98 to 100%). The authors consider the first three species to be pests of the sugarcane crop complex, while the last two species are not.
Resumo:
In the lowland agro-forest of the Sierra Madre Biodiversity Corridor (SMBC), it is considered that a native rodent species, Rattus everetti is competitively dominant over an invasive pest species, Rattus tanezumi. The main aim of this study was to assess the response of R. tanezumi following short term removal of R. everetti. We tested this experimentally by trapping and removing R. everetti from two treatment sites in agro-forest habitat on three occasions over three consecutive months. This was followed by three months of non-removal trapping. Two non-treatment sites were trapped for comparison. Following R. everetti removal, R. everetti individuals rapidly immigrated into the treatment sites and a significantly higher proportion of R. tanezumi females were in breeding condition in the treatment sites than in the non-treatment sites. The results from this study provide evidence of competition between native and invasive rodent species in complex agro-ecosystems. We were also able to demonstrate that R. everetti populations are able to recover rapidly from the non-target effects of short-term lethal control in and around agro-forest.
Resumo:
The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.
Resumo:
The radiocarbon-dated palaeoecological study of Lago Riane (Ligurian Apennines, NW Italy) presented here forms part of a wider investigation into the relationships between Holocene vegetation succession, climate change and human activities in the northern Apennines. The record of vegetation history from Lago Riane indicates that, since the end of the last glaciation, climate change and prehistoric human activities, combined with several local factors, have strongly influenced the pattern and timing of natural vegetation succession. The pollen record indicates an important change in vegetation cover at Lago Riane at ~8500–8200 cal. years b.p., coincident with a well-known period of rapid climate change. At ~6100 cal. years b.p., Fagus woodland colonised Lago Riane during a period of climate change and expansion of Late Neolithic human activities in the upland zone of Liguria. A marked decline in Abies woodland, and the expansion of Fagus woodland, at ~4700 cal. years b.p., coincided with further archaeological evidence for pastoralism in the mountains of Liguria during the Copper Age. At ~3900–3600 cal. years b.p. (Early to Middle Bronze Age transition), a temporary expansion of woodland at Lago Riane has been provisionally attributed to a decline in human pressure on the environment during a period of short-term climate change
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53′N, 36°29.55′E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18–14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1–14.5 kyr BP), indicated by δ18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative δ13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5–12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative δ13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7–8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5–5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.
Resumo:
Objective: The effect of a single 5 day enrofloxacin treatment on the native Campylobacter coli population in conventionally weaned 5-week-old pigs was investigated. Materials: Twelve pigs were split into two groups of six: one group was treated with a therapeutic dose (15 mg/pig/day) of enrofloxacin and the other remained untreated to act as the control. Campylobacter coli were isolated from faecal samples and tested for ciprofloxacin resistance by measuring MIC values. Mutations in the quinolone resistance-determining region (QRDR) of the gyrA gene of resistant isolates were identified by sequencing and denaturing HPLC. Levels of enrofloxacin and its primary metabolite ciprofloxacin in the pig faeces were also measured by HPLC. Results: No quinolone-resistant C. coli (n = 867) were detected in any of the pigs prior to treatment, indicating <0.1% resistance in the group. Resistant C. coli were isolated from pigs for up to 35 days after treatment with a therapeutic dose. These resistant C. coli had MIC values of 128 mg/L and 8-16 mg/L for nalidixic acid and ciprofloxacin, respectively, and the same single point mutation causing a Thr-86 to Ile substitution in the QRDR was identified in each. The concentration of enrofloxacin in the pig faeces was 2-4 mug/g faeces for the duration of the 5 day therapeutic treatment and was detected up to 10 days post-treatment. Ciprofloxacin was also measured and peaked at 0.6 mug/g faeces in the treated group. Conclusion: This study provides evidence that a single course of enrofloxacin treatment contributes directly to the emergence and persistence of fluoroquinolone resistance in C. coli.
Resumo:
We examine the effect of ozone damage to vegetation as caused by anthropogenic emissions of ozone precursor species and quantify it in terms of its impact on terrestrial carbon stores. A simple climate model is then used to assess the expected changes in global surface temperature from the resulting perturbations to atmospheric concentrations of carbon dioxide, methane, and ozone. The concept of global temperature change potential (GTP) metric, which relates the global average surface temperature change induced by the pulse emission of a species to that induced by a unit mass of carbon dioxide, is used to characterize the impact of changes in emissions of ozone precursors on surface temperature as a function of time. For NOx emissions, the longer-timescale methane perturbation is of the opposite sign to the perturbations in ozone and carbon dioxide, so NOx emissions are warming in the short term, but cooling in the long term. For volatile organic compound (VOC), CO, and methane emissions, all the terms are warming for an increase in emissions. The GTPs for the 20 year time horizon are strong functions of emission location, with a large component of the variability owing to the different vegetation responses on different continents. At this time horizon, the induced change in the carbon cycle is the largest single contributor to the GTP metric for NOx and VOC emissions. For NOx emissions, we estimate a GTP20 of −9 (cooling) to +24 (warming) depending on assumptions of the sensitivity of vegetation types to ozone damage.