96 resultados para naive bayes classifier


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic discrimination (SD) depends on a discriminant function for classification. In this paper, an improved SD is introduced to reduce the error rate of the standard SD in the context of a two-class classification problem. The learning procedure of the improved SD consists of two stages. Initially a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. Then the standard SD is modified by 1) restricting sampling in the important space, and 2) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but with a smaller variance than that of the standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples are provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, naive female R vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female R vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining R vindemiae attack rates. mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-world text classification tasks often suffer from poor class structure with many overlapping classes and blurred boundaries. Training data pooled from multiple sources tend to be inconsistent and contain erroneous labelling, leading to poor performance of standard text classifiers. The classification of health service products to specialized procurement classes is used to examine and quantify the extent of these problems. A novel method is presented to analyze the labelled data by selectively merging classes where there is not enough information for the classifier to distinguish them. Initial results show the method can identify the most problematic classes, which can be used either as a focus to improve the training data or to merge classes to increase confidence in the predicted results of the classifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations on the standard Kohonen feature map can enable an ordering of the map state space by using only a limited subset of the complete input vector. Also it is possible to employ merely a local adaptation procedure to order the map, rather than having to rely on global variables and objectives. Such variations have been included as part of a hybrid learning system (HLS) which has arisen out of a genetic-based classifier system. In the paper a description of the modified feature map is given, which constitutes the HLSs long term memory, and results in the control of a simple maze running task are presented, thereby demonstrating the value of goal related feedback within the overall network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of varicella zoster virus (VZV) immunity in healthcare workers without a history of chickenpox is important for identifying those in need of vOka vaccination. Post immunisation, healthcare workers in the UK who work with high risk patients are tested for seroconversion. To assess the performance of the time-resolved fluorescence immunoassay (TRFIA) for the detection of antibody in vaccinated as well as unvaccinated individuals, a cut-off was first calculated. VZV-IgG specific avidity and titres six weeks after the first dose of vaccine were used to identify subjects with pre-existing immunity among a cohort of 110 healthcare workers. Those with high avidity (≥60%) were considered to have previous immunity to VZV and those with low or equivocal avidity (<60%) were considered naive. The former had antibody levels ≥400mIU/mL and latter had levels <400mIU/mL. Comparison of the baseline values of the naive and immune groups allowed the estimation of a TRFIA cut-off value of >130mIU/mL which best discriminated between the two groups and this was confirmed by ROC analysis. Using this value, the sensitivity and specificity of TRFIA cut-off were 90% (95% CI 79-96), and 78% (95% CI 61-90) respectively in this population. A subset of samples tested by the gold standard Fluorescence Antibody to Membrane Antigen (FAMA) test showed 84% (54/64) agreement with TRFIA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques, the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy principle subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes theorem. Through simulation on a generic exponential model, the proposed nonlinear filter is implemented and the results prove to be superior to that of the extended Kalman filter and a class of nonlinear filters based on partitioning algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper suggests a method for identifying individuals who are most suited to using virtual reality (VR) systems. The aim is to help both an individual or employer to decide where that individual's skills and abilities would be best deployed. By considering a potential user's competence and temperament, a graphical representation is introduced that may then be used to crudely delineate a high-aptitude participant against those with lesser capabilities. By introducing standard tests for competence and a standard classifier for temperament, and by further weighting each measure with respect to the technology currently available and the application, a detailed representation of the effectiveness of different users is developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – Expectations of future market conditions are acknowledged to be crucial for the development decision and hence for shaping the built environment. The purpose of this paper is to study the central London office market from 1987 to 2009 and test for evidence of rational, adaptive and naive expectations. Design/methodology/approach – Two parallel approaches are applied to test for either rational or adaptive/naive expectations: vector auto-regressive (VAR) approach with Granger causality tests and recursive OLS regression with one-step forecasts. Findings – Applying VAR models and a recursive OLS regression with one-step forecasts, the authors do not find evidence of adaptive and naïve expectations of developers. Although the magnitude of the errors and the length of time lags between market signal and construction starts vary over time and development cycles, the results confirm that developer decisions are explained, to a large extent, by contemporaneous and historic conditions in both the City and the West End, but this is more likely to stem from the lengthy design, financing and planning permission processes rather than adaptive or naive expectations. Research limitations/implications – More generally, the results of this study suggest that real estate cycles are largely generated endogenously rather than being the result of large demand shocks and/or irrational behaviour. Practical implications – Developers may be able to generate excess profits by exploiting market inefficiencies but this may be hindered in practice by the long periods necessary for planning and construction of the asset. Originality/value – This paper focuses the scholarly debate of real estate cycles on the role of expectations. It is also one of very few spatially disaggregate studies of the subject matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expectations of future market conditions are generally acknowledged to be crucial for the development decision and hence for shaping the built environment. This empirical study of the Central London office market from 1987 to 2009 tests for evidence of adaptive and naive expectations. Applying VAR models and a recursive OLS regression with one-step forecasts, we find evidence of adaptive and naïve, rather than rational expectations of developers. Although the magnitude of the errors and the length of time lags vary over time and development cycles, the results confirm that developers’ decisions are explained to a large extent by contemporaneous and past conditions in both London submarkets. The corollary of this finding is that developers may be able to generate excess profits by exploiting market inefficiencies but this may be hindered in practice by the long periods necessary for planning and construction of the asset. More generally, the results of this study suggest that real estate cycles are largely generated endogenously rather than being the result of unexpected exogenous shocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IPD Annual Index is the largest and most comprehensive Real Estate market index available in the UK Such coverage however inevitably leads to delays in publication. In contrast there are a number of quarterly and monthly indices which are published within days of the year end but which lack the coverage in terms of size and numbers of properties. This paper analyses these smaller but more timely indices to see whether such indices can be used to predict the performance of the IPD Annual Index. Using a number of measures of forecasting accuracy it is shown that the smaller indices provide unbiased and efficient predictions of the IPD Annual Index. Such indices also significantly outperform a naive no-change model. Although no one index performs significantly better than the others. The more timely indices however do not perfectly track the IPD Annual Index. As a result any short run predictions of performance will be subject to a degree of error. Nevertheless the more timely indices, although lacking authoritative coverage, provide a valuable service to investors giving good estimates of Real Estates performance well before the publication of the IPD Annual Index.