48 resultados para multimediale Marsili Augmented aumentata interfaccia interazione museale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tiger nut tuber of the Cyperus esculentus L. plant is an unusual storage system with similar amounts of starch and lipid. The extraction of its oil employing both mechanical pressing and aqueous enzymatic extraction (AEE) methods was investigated and an examination of the resulting products was carried out. The effects of particle size and moisture content of the tuber on the yield of tiger nut oil with pressing were initially studied. Smaller particles were found to enhance oil yields while a range of moisture content was observed to favour higher oil yields. When samples were first subjected to high pressures up to 700 MPa before pressing at 38 MPa there was no increase in the oil yields. Ground samples incubated with a mixture of α- Amylase, Alcalase, and Viscozyme (a mixture of cell wall degrading enzyme) as a pre-treatment, increased oil yield by pressing and 90% of oil was recovered as a result. When aqueous enzymatic extraction was carried out on ground samples, the use of α- Amylase, Alcalase, and Celluclast independently improved extraction oil yields compared to oil extraction without enzymes by 34.5, 23.4 and 14.7% respectively. A mixture of the three enzymes further augmented the oil yield and different operational factors were individually studied for their effects on the process. These include time, total mixed enzyme concentration, linear agitation speed, and solid-liquid ratio. The largest oil yields were obtained with a solid-liquid ratio of 1:6, mixed enzyme concentration of 1% (w/w) and 6 h incubation time although the longer time allowed for the formation of an emulsion. Using stationary samples during incubation surprisingly gave the highest oil yields, and this was observed to be as a result of gravity separation occurring during agitation. Furthermore, the use of high pressure processing up to 300 MPa as a pre-treatment enhanced oil yields but additional pressure increments had a detrimental effect. The quality of oils recovered from both mechanical and aqueous enzymatic extraction based on the percentage free fatty acid (% FFA) and peroxide values (PV) all reflected the good stabilities of the oils with the highest % FFA of 1.8 and PV of 1.7. The fatty acid profiles of all oils also remained unchanged. The level of tocopherols in oils were enhanced with both enzyme aided pressing (EAP) and high pressure processing before AEE. Analysis on the residual meals revealed DP 3 and DP 4 oligosaccharides present in EAP samples but these would require further assessment on their identity and quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Major Depressive Disorder (MDD) is among the most prevalent and disabling medical conditions worldwide. Identification of clinical and biological markers (“biomarkers”) of treatment response could personalize clinical decisions and lead to better outcomes. This paper describes the aims, design, and methods of a discovery study of biomarkers in antidepressant treatment response, conducted by the Canadian Biomarker Integration Network in Depression (CAN-BIND). The CAN-BIND research program investigates and identifies biomarkers that help to predict outcomes in patients with MDD treated with antidepressant medication. The primary objective of this initial study (known as CAN-BIND-1) is to identify individual and integrated neuroimaging, electrophysiological, molecular, and clinical predictors of response to sequential antidepressant monotherapy and adjunctive therapy in MDD. Methods CAN-BIND-1 is a multisite initiative involving 6 academic health centres working collaboratively with other universities and research centres. In the 16-week protocol, patients with MDD are treated with a first-line antidepressant (escitalopram 10–20 mg/d) that, if clinically warranted after eight weeks, is augmented with an evidence-based, add-on medication (aripiprazole 2–10 mg/d). Comprehensive datasets are obtained using clinical rating scales; behavioural, dimensional, and functioning/quality of life measures; neurocognitive testing; genomic, genetic, and proteomic profiling from blood samples; combined structural and functional magnetic resonance imaging; and electroencephalography. De-identified data from all sites are aggregated within a secure neuroinformatics platform for data integration, management, storage, and analyses. Statistical analyses will include multivariate and machine-learning techniques to identify predictors, moderators, and mediators of treatment response. Discussion From June 2013 to February 2015, a cohort of 134 participants (85 outpatients with MDD and 49 healthy participants) has been evaluated at baseline. The clinical characteristics of this cohort are similar to other studies of MDD. Recruitment at all sites is ongoing to a target sample of 290 participants. CAN-BIND will identify biomarkers of treatment response in MDD through extensive clinical, molecular, and imaging assessments, in order to improve treatment practice and clinical outcomes. It will also create an innovative, robust platform and database for future research.