47 resultados para matrix population models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human Body Thermoregulation Models have been widely used in the field of human physiology or thermal comfort studies. However there are few studies on the evaluation method for these models. This paper summarises the existing evaluation methods and critically analyses the flaws. Based on that, a method for the evaluating the accuracy of the Human Body Thermoregulation models is proposed. The new evaluation method contributes to the development of Human Body Thermoregulation models and validates their accuracy both statistically and empirically. The accuracy of different models can be compared by the new method. Furthermore, the new method is not only suitable for the evaluation of Human Body Thermoregulation Models, but also can be theoretically applied to the evaluation of the accuracy of the population-based models in other research fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.