90 resultados para low energy reporters


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-energy and photoemission electron microscopy enables the determination of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub-m scale. Using these techniques the early oxidation stages of nickel were studied. After exposing the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all facets. After oxygen exposure at 473–673 K, small NiO crystallites are formed on all facets but not in the vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without significant oxygen coverage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have performed an experimental structure determination of the ordered p(sqrt[3] x sqrt[3])R30 degrees structures of chlorine and iodine on Au{111} using low-energy electron diffraction (LEED). Despite great similarities in the structure of the underlying substrate, which shows only minor deviations from the bulk positions in both cases, chlorine and iodine are found to adsorb in different adsorption sites, fcc and hcp hollow sites, respectively. The experimental Au-Cl and Au-I bond lengths of 2.56 and 2.84 A are close to the sums of the covalent radii, supporting the view that the bond is essentially covalent in nature; however, they are significantly shorter than predicted theoretically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and in interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption One structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the ease for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic−inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of l- and d-enantiomers aggregate into superstructures with chiral (−1 2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β−OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied enantiospecific differences in the adsorption of (S)- and (R)-alanine on Cu{531}R using low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. At saturation coverage, alanine adsorbs as alaninate forming a p(1 4) superstructure. LEED shows a significantly higher degree of long-range order for the S than for the R enantiomer. Also carbon K-edge NEXAFS spectra show differences between (S)- and (R)-alanine in the variations of the ð resonance when the linear polarization vector is rotated within the surface plane. This indicates differences in the local adsorption geometries of the molecules, most likely caused by the interaction between the methyl group and the metal surface and/or intermolecular hydrogen bonds. Comparison with model calculations and additional information from LEED and photoelectron spectroscopy suggest that both enantiomers of alaninate adsorb in two different orientations associated with triangular adsorption sites on {110} and {311} microfacets of the Cu{531} surface. The experimental data are ambiguous as to the exact difference between the local geometries of the two enantiomers. In one of two models that fit the data equally well, significantly more (R)-alaninate molecules are adsorbed on {110} sites than on {311} sites whereas for (S)-alaninate the numbers are equal. The enantiospecific differences found in these experiments are much more pronounced than those reported from other ultrahigh vacuum techniques applied to similar systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of the chiral kinked Pt{531} surface has been determined by low-energy electron diffraction intensity-versus-energy (LEED-IV) analysis and density functional theory (DFT). Large contractions and expansions of the vertical interlayer distances with respect to the bulk-terminated surface geometry were found for the first six layers (LEED: d(12) = 0.44 angstrom, d(23) = 0.69 angstrom, d(34) = 0.49 angstrom, d(45) = 0.95 angstrom, d(56) = 0.56 angstrom; DFT: d(12) = 0.51 angstrom, d(23) = 0.55 angstrom, d(34) = 0.74 angstrom, d(45) = 0.78 angstrom, d(56) = 0.63 angstrom; d(bulk) = 0.66 angstrom). Energy-dependent cancellations of LEED spots over unusually large energy ranges, up to 100 eV, can be explained by surface roughness and reproduced by applying a model involving 0.25 ML of vacancies and adatoms in the scattering calculations. The agreement between the results from LEED and DFT is not as good as in other cases, which could be due to this roughness of the real surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of the mixed p(3x3)-(3OH+3H(2)O) phase on Pt{111} has been investigated by low-energy electron diffraction-IV structure analysis. The OH+H2O overlayer consists of hexagonal rings of coplanar oxygen atoms interlinked by hydrogen bonds. Lateral shifts of the O atoms away from atop sites result in different O-O separations and hexagons with only large separations (2.81 and 3.02 angstrom) linked by hexagons with alternating separations of 2.49 and 2.81/3.02 A. This unusual pattern is consistent with a hydrogen-bonded network in which water is adsorbed in cyclic rings separated by OH in a p(3x3) structure. The topmost two layers of the Pt atoms relax inwards with respect to the clean surface and both show vertical buckling of up to 0.06 angstrom. In addition, significant shifts away from the lateral bulk positions have been found for the second layer of Pt atoms. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of NO on Ir{100} has been studied as a function of NO coverage and temperature using temperature programmed reflection absorption infrared spectroscopy (TP-RAIRS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). After saturating the clean (1 x 5)-reconstructed surface with NO at 95 K. two N-2, desorption peaks are observed upon heating. The first N-2 peak at 346 K results from the decomposition of bridge-bonded NO, and the second at 475 K from the decomposition of atop-bonded NO molecules. NO decomposition is proposed to be the rate limiting step for both N-2 desorption states. For high NO coverages on the (1 x 5) surface, the narrow width of the first N-2 desorption peak is indicative of an autocatalytic process for which the parallel formation of N2O appears to be the crucial step. When NO is adsorbed on the metastable unreconstructed (1 x 1) phase of clean Ir{100} N-2 desorption starts at lower temperatures, indicating that this surface modification is more reactive. When a high coverage of oxygen, near 0.5 ML, is pre-adsorbed on the surface, the decomposition of NO is inhibited and mainly desorption of intact NO is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adsorption of oxygen on the chiral Pt{531} surface was studied by high-resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). After the surface is annealed in oxygen (3 x 10(-7) mbar), three O 1s peaks are observed in XPS. One peak, at 529.5 eV, is assigned to chemisorbed oxygen; it disappears after annealing in vacuo to temperatures above 900 K. The other two peaks at 530.8 and 532.3 eV are stable up to at least 1250 K. They are associated with oxide clusters on the surface. These clusters readily react with coadsorbed carbon monoxide at temperatures between 315 and 620 K.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface geometries of the p (root7- x root7)R19degrees-(4CO) and c(2 x 4)-(2CO) layers on Ni {111} and the clean Ni {111} surface were determined by low energy electron diffraction structure analysis. For the clean surface small but significant contractions of d(12) and d(23) (both 2.02 Angstrom) were found with respect to the bulk interlayer distance (2.03 Angstrom). In the c(2 x 4)-(2CO) structure these distances are expanded, with values of d(12) = 2.08 Angstrom and d(23) = 2.06 Angstrom and buckling of 0.08 and 0.02 Angstrom, respectively, in the first and second layer. CO resides near hcp and fcc hollow sites with relatively large lateral shifts away from the ideal positions leading to unequal C-Ni bond lengths between 1.76 and 1.99 Angstrom. For the p(root7- x root7-)R19'-(4CO) layer two best fit geometries were found, which agree in most of their atomic positions, except for one out of four CO molecules, which is either near atop or between bridge and atop. The remaining three molecules reside near hcp and fcc sites, again with large lateral deviations from their ideal positions. The average C Ni bond length for these molecules is, however, the same as for CO on hollow sites at low coverage. The average CNi bond length at hollow sites, the interlayer distances, and buckling in the first Ni layer are similar to the c(2 x 4)(2CO) geometry, only the buckling in the second layer (0.08 Angstrom) is significantly larger. Lateral and vertical shifts of the Ni atoms in the first layer lead to unsymmetric environments for the CO molecules, which can be regarded as an imprint of the chiral p(root7- x root7-)R19degrees lattice geometry onto the substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combination of photoelectron spectroscopy, temperature programmed desorption and low energy electron diffraction structure determinations have been applied to study the p(2 x 2) structures of pure hydrogen and co-adsorbed hydrogen and CO on Ni {111}. In agreement with earlier work atomic hydrogen is found to adsorb on fcc and hcp sites in the pure layer with H-Ni bond lengths of 1.74Angstrom. The substrate interlayer distances, d(12) = 2.05Angstrom and d(23) = 2.06Angstrom, are expanded with respect to clean Ni {111} with buckling of 0.04Angstrom in the first layer. In the co-adsorbed phase Co occupies hcp sites and only the hydrogen atoms on fcc sites remain on the surface. d(12) is even further expanded to 2.08Angstrom with buckling in the first and second layer of 0.06 and 0.02Angstrom, respectively. The C-O, C-Ni, and H-Ni bond lengths are within the range of values also found for the pure adsorbates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Core-level photoelectron spectra, in excellent agreement with ab initio calculations, confirm that the stable wetting layer of water on Ru{0001} contains O-H and H2O in roughly 3:5 proportion, for OHx coverages between 0.25 and 0.7 ML, and T<170 K. Proton disorder explains why the wetting structure looks to low energy electron diffraction (LEED) to be an ordered p(root3xroot3)R30degrees adlayer, even though approximate to3/8 of its molecules are dissociated. Complete dissociation to atomic oxygen starts near 190 K. Low photon flux in the synchrotron experiments ensured that the diagnosis of the nature of the wetting structure quantified by LEED is free of beam-induced damage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low energy electron diffraction (LEED) structure determinations have been performed for the p(2 x 2) structures of pure oxygen and oxygen co-adsorbed with CO on Ni{111}. Optimisation of the non-geometric parameters led to very good agreement between experimental and theoretical IV-curves and hence to a high accuracy in the structural parameters. In agreement with earlier work atomic oxygen is found to adsorb on fee sites in both structures. In the co-adsorbed phase CO occupies atop sites. The positions of the substrate atoms are almost identical, within 0.02 Angstrom, in both structures, implying that the interaction with oxygen dominates the arrangement of Ni atoms at the surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitaxial ultrathin titanium dioxide films of 0.3 to similar to 7 nm thickness on a metal single crystal substrate have been investigated by high resolution vibrational and electron spectroscopies. The data complement previous morphological data provided by scanned probe microscopy and low energy electron diffraction to provide very complete characterization of this system. The thicker films display electronic structure consistent with a stoichiometric TiO2 phase. The thinner films appear nonstoichiometric due to band bending and charge transfer from the metal substrate, while work function measurements also show a marked thickness dependence. The vibrational spectroscopy shows three clear phonon bands at 368, 438, and 829 cm(-1) (at 273 K), which confirms a rutile structure. The phonon band intensity scales linearly with film thickness and shift slightly to lower frequencies with increasing temperature, in accord with results for single crystals. (c) 2007 American Institute of Physics.