58 resultados para linear dynamic systems
Resumo:
Using a geometric approach, a composite control—the sum of a slow control and a fast control—is derived for a general class of non-linear singularly perturbed systems. A new and simpler method of composite control design is proposed whereby the fast control is completely designed at the outset. The slow control is then free to be chosen such that the slow integral manifold of the original system approximates a desired design manifold to within any specified order of ε accuracy.
Resumo:
Using a geometric approach, a composite control—the sum of a slow control and a fast control—is derived for a general class of non-linear singularly perturbed systems. A new and simpler method of composite control design is proposed whereby the fast control is completely designed at the outset. The slow control is then free to be chosen such that the slow integral manifold of the original system approximates a desired design manifold to within any specified order of ε accuracy.
Resumo:
A characterization of observability for linear time-varying descriptor systemsE(t)x(t)+F(t)x(t)=B(t)u(t), y(t)=C(t)x(t) was recently developed. NeitherE norC were required to have constant rank. This paper defines a dual system, and a type of controllability so that observability of the original system is equivalent to controllability of the dual system. Criteria for observability and controllability are given in terms of arrays of derivatives of the original coefficients. In addition, the duality results of this paper lead to an improvement on a previous fundamental structure result for solvable systems of the formE(t)x(t)+F(t)x(t)=f(tt).
Resumo:
For linear multivariable time-invariant continuous or discrete-time singular systems it is customary to use a proportional feedback control in order to achieve a desired closed loop behaviour. Derivative feedback is rarely considered. This paper examines how derivative feedback in descriptor systems can be used to alter the structure of the system pencil under various controllability conditions. It is shown that derivative and proportional feedback controls can be constructed such that the closed loop system has a given form and is also regular and has index at most 1. This property ensures the solvability of the resulting system of dynamic-algebraic equations. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way. The problem of pole placement with derivative feedback alone and in combination with proportional state feedback is also investigated. A computational algorithm for improving the “conditioning” of the regularized closed loop system is derived.
Resumo:
Integrated simulation models can be useful tools in farming system research. This chapter reviews three commonly used approaches, i.e. linear programming, system dynamics and agent-based models. Applications of each approach are presented and strengths and drawbacks discussed. We argue that, despite some challenges, mainly related to the integration of different approaches, model validation and the representation of human agents, integrated simulation models contribute important insights to the analysis of farming systems. They help unravelling the complex and dynamic interactions and feedbacks among bio-physical, socio-economic, and institutional components across scales and levels in farming systems. In addition, they can provide a platform for integrative research, and can support transdisciplinary research by functioning as learning platforms in participatory processes.
Resumo:
Implicit dynamic-algebraic equations, known in control theory as descriptor systems, arise naturally in many applications. Such systems may not be regular (often referred to as singular). In that case the equations may not have unique solutions for consistent initial conditions and arbitrary inputs and the system may not be controllable or observable. Many control systems can be regularized by proportional and/or derivative feedback.We present an overview of mathematical theory and numerical techniques for regularizing descriptor systems using feedback controls. The aim is to provide stable numerical techniques for analyzing and constructing regular control and state estimation systems and for ensuring that these systems are robust. State and output feedback designs for regularizing linear time-invariant systems are described, including methods for disturbance decoupling and mixed output problems. Extensions of these techniques to time-varying linear and nonlinear systems are discussed in the final section.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.