62 resultados para large effective population size
Resumo:
Statistical graphics are a fundamental, yet often overlooked, set of components in the repertoire of data analytic tools. Graphs are quick and efficient, yet simple instruments of preliminary exploration of a dataset to understand its structure and to provide insight into influential aspects of inference such as departures from assumptions and latent patterns. In this paper, we present and assess a graphical device for choosing a method for estimating population size in capture-recapture studies of closed populations. The basic concept is derived from a homogeneous Poisson distribution where the ratios of neighboring Poisson probabilities multiplied by the value of the larger neighbor count are constant. This property extends to the zero-truncated Poisson distribution which is of fundamental importance in capture–recapture studies. In practice however, this distributional property is often violated. The graphical device developed here, the ratio plot, can be used for assessing specific departures from a Poisson distribution. For example, simple contaminations of an otherwise homogeneous Poisson model can be easily detected and a robust estimator for the population size can be suggested. Several robust estimators are developed and a simulation study is provided to give some guidance on which should be used in practice. More systematic departures can also easily be detected using the ratio plot. In this paper, the focus is on Gamma mixtures of the Poisson distribution which leads to a linear pattern (called structured heterogeneity) in the ratio plot. More generally, the paper shows that the ratio plot is monotone for arbitrary mixtures of power series densities.
Resumo:
One-second-resolution zenith radiance measure- ments from the Atmospheric Radiation Measurement pro- gram’s new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a re- markable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol prop- erties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical con- siderations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains un- changed.
Resumo:
The Lincoln–Petersen estimator is one of the most popular estimators used in capture–recapture studies. It was developed for a sampling situation in which two sources independently identify members of a target population. For each of the two sources, it is determined if a unit of the target population is identified or not. This leads to a 2 × 2 table with frequencies f11, f10, f01, f00 indicating the number of units identified by both sources, by the first but not the second source, by the second but not the first source and not identified by any of the two sources, respectively. However, f00 is unobserved so that the 2 × 2 table is incomplete and the Lincoln–Petersen estimator provides an estimate for f00. In this paper, we consider a generalization of this situation for which one source provides not only a binary identification outcome but also a count outcome of how many times a unit has been identified. Using a truncated Poisson count model, truncating multiple identifications larger than two, we propose a maximum likelihood estimator of the Poisson parameter and, ultimately, of the population size. This estimator shows benefits, in comparison with Lincoln–Petersen’s, in terms of bias and efficiency. It is possible to test the homogeneity assumption that is not testable in the Lincoln–Petersen framework. The approach is applied to surveillance data on syphilis from Izmir, Turkey.
Resumo:
Habitat modification for agriculture is one of the greatest current threats to global biodiversity. Studies show large-scale population declines and short-term demographic impacts, but knowledge of the long-term effects of agriculture on individuals remains poor. This thesis examines the short- and long-term impact of agriculture on a reintroduced population of the Mauritius kestrel Falco punctatus, a tropical forest-dwelling raptor endemic to the island of Mauritius, that also utilises agricultural habitats. This population is a particularly appropriate model system, because complete life history data exists for individuals over a 22-year period, alongside detailed habitat and climate data. Agriculture has a short-term detrimental effect on Mauritius kestrel breeding success by exacerbating the seasonal decline in fledgling production. This is partly driven by the habitat-specific composition of the prey community that kestrels exploit to feed their chicks. The fledglings from agricultural territories tend to recruit in agricultural territories. This is largely due to poor natal dispersal and fine-scale spatial autocorrelation in the habitat matrix. Breeders do not respond to agriculture in the breeding territory by dispersing, unless the pair bond is broken. Therefore, individuals originating in agricultural territories tend to recruit, and remain in, agricultural territories throughout their lives. In addition to this, females from agricultural natal territories have shorter lifespans, schedule their peak reproductive output earlier in life, and exhibit more rapid senescence than non-agricultural females. The combination of this long-term effect and the adult experience of agriculture imposed by life history and environmental constraints, leads to a lower mean lifetime reproductive rate compared to females originating in non-agricultural habitats. These results demonstrate that agriculture experienced in early life has a lifelong effect on individuals. The effects can persist in time and space, with potentially delayed effects on population dynamics. These findings are important for understanding species’ responses to agricultural expansion.
Resumo:
Increasing population size and demand for food in the developing world is driving the intensification ofagriculture, often threatening the biodiversity within the farmland itself and in the surrounding land-scape. This paper quantifies bird and tree species richness, tree carbon and farmer’s gross income, andinteractions between these four variables, across an agricultural gradient in central Uganda. We showedthat higher cultivation intensities in farmed landscapes resulted in increased income but also a declinein species richness of birds and trees, and reductions in tree carbon storage. These declines were particu-larly marked with a shift from high intensity smallholder mixed cropping to plantation style agriculture.This was especially evident for birds where significant declines only occurred in plantations. Small scalefarming will likely continue to be a key source of cash income for the rural populations, and ensuring‘sustained agricultural growth’ within such systems while minimising negative impacts on biodiversityand other key ecosystem services will be a major future challenge.
Resumo:
Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.
Resumo:
We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.
Resumo:
The difference between cirrus emissivities at 8 and 11 μm is sensitive to the mean effective ice crystal size of the cirrus cloud, De. By using single scattering properties of ice crystals shaped as planar polycrystals, diameters of up to about 70 μm can be retrieved, instead of up to 45 μm assuming spheres or hexagonal columns. The method described in this article is used for a global determination of mean effective ice crystal sizes of cirrus clouds from TOVS satellite observations. A sensitivity study of the De retrieval to uncertainties in hypotheses on ice crystal shape, size distributions, and temperature profiles, as well as in vertical and horizontal cloud heterogeneities shows that uncertainties can be as large as 30%. However, the TOVS data set is one of few data sets which provides global and long-term coverage. Having analyzed the years 1987–1991, it was found that measured effective ice crystal diameters De are stable from year to year. For 1990 a global median De of 53.5 μm was determined. Averages distinguishing ocean/land, season, and latitude lie between 23 μm in winter over Northern Hemisphere midlatitude land and 64 μm in the tropics. In general, larger Des are found in regions with higher atmospheric water vapor and for cirrus with a smaller effective emissivity.
Resumo:
Indirect and direct models of sexual selection make different predictions regarding the quantitative genetic relationships between sexual ornaments and fitness. Indirect models predict that ornaments should have a high heritability and that strong positive genetic covariance should exist between fitness and the ornament. Direct models, on the other hand, make no such assumptions about the level of genetic variance in fitness and the ornament, and are therefore likely to be more important when environmental sources of variation are large. Here we test these predictions in a wild population of the blue tit (Parus caeruleus), a species in which plumage coloration has been shown to be under sexual selection. Using 3 years of cross-fostering data from over 250 breeding attempts, we partition the covariance between parental coloration and aspects of nestling fitness into a genetic and environmental component. Contrary to indirect models of sexual selection, but in agreement with direct models, we show that variation in coloration is only weakly heritable (h(2) < 0.11), and that two components of offspring fitness-nestling size and fledgling recruitment-are strongly dependent on parental effects, rather than genetic effects. Furthermore, there was no evidence of significant positive genetic covariation between parental colour and offspring traits. Contrary to direct benefit models, however, we find little evidence that variation in colour reliably indicates the level of parental care provided by either males or females. Taken together, these results indicate that the assumptions of indirect models of sexual selection are not supported by the genetic basis of the traits reported on here.
Resumo:
Few studies have linked density dependence of parasitism and the tritrophic environment within which a parasitoid forages. In the non-crop plant-aphid, Centaurea nigra-Uroleucon jaceae system, mixed patterns of density-dependent parasitism by the parasitoids Aphidius funebris and Trioxys centaureae were observed in a survey of a natural population. Breakdown of density-dependent parasitism revealed that density dependence was inverse in smaller colonies but direct in large colonies (>20 aphids), suggesting there is a threshold effect in parasitoid response to aphid density. The CV2 of searching parasitoids was estimated from parasitism data using a hierarchical generalized linear model, and CV2>1 for A. funebris between plant patches, while for T. centaureae CV2>1 within plant patches. In both cases, density independent heterogeneity was more important than density-dependent heterogeneity in parasitism. Parasitism by T. centaureae increased with increasing plant patch size. Manipulation of aphid colony size and plant patch size revealed that parasitism by A. funebris was directly density dependent at the range of colony sizes tested (50-200 initial aphids), and had a strong positive relationship with plant patch size. The effects of plant patch size detected for both species indicate that the tritrophic environment provides a source of host density independent heterogeneity in parasitism, and can modify density-dependent responses. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
1. Disease epizootics can significantly influence host population dynamics and the structure and functioning of ecological communities. Sarcoptic mange Sarcoptes scabiei has dramatically reduced red fox populations Vulpes vulpes in several countries, including Britain, although impacts on demographic processes are poorly understood. We review the literature on the impact of mange on red fox populations, assess its current distribution in Britain through a questionnaire survey and present new data on resultant demographic changes in foxes in Bristol, UK. 2. A mange epizootic in Sweden spread across the entire country in < 10 years resulting in a decline in fox density of up to 95%; density remained lowered for 15–20 years. In Spain, mange has been enzootic for > 75 years and is widely distributed; mange presence was negatively correlated with habitat quality. 3. Localized outbreaks have occurred sporadically in Britain during the last 100 years. The most recent large-scale outbreak arose in the 1990s, although mange has been present in south London and surrounding environs since the 1940s. The questionnaire survey indicated that mange was broadly distributed across Britain, but areas of perceived high prevalence (> 50% affected) were mainly in central and southern England. Habitat type did not significantly affect the presence/absence of mange or perceived prevalence rates. Subjective assessments suggested that populations take 15–20 years to recover. 4. Mange appeared in Bristol's foxes in 1994. During the epizootic phase (1994–95), mange spread through the city at a rate of 0.6–0.9 km/month, with a rise in infection in domestic dogs Canis familiaris c. 1–2 months later. Juvenile and adult fox mortality increased and the proportion of females that reproduced declined but litter size was unaffected. Population density declined by > 95%. 5. In the enzootic phase (1996–present), mange was the most significant mortality factor. Juvenile mortality was significantly higher than in the pre-mange period, and the number of juveniles classified as dispersers declined. Mange infection reduced the reproductive potential of males and females: females with advanced mange did not breed; severely infected males failed to undergo spermatogenesis. In 2004, Bristol fox population density was only 15% of that in 1994.
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
The aim of this work was to investigate the lipopeptides aggregation behavior in single and mixed solutions in a wide range of concentrations, in order to optimize their separation and purification following the two-step ultrafiltration process and using large pore size membranes (up to MWCO = 300 kDa). Micelle size was determined by dynamic light scattering. In single solutions of lipopeptide both surfactin and mycosubtilin formed micelles of different size depending on their concentration, micelles of average diameter = 5–105 nm for surfactin and 8–18 nm for mycosubtilin. However when the lipopeptides were in the same solution they formed mixed micelles of different size (d = 8 nm) and probably conformation to that formed by the individual lipopeptide, this prevents their separation according to size. These lipopeptides were purified from fermentation culture by the two-step ultrafiltration process using different MWCO membranes ranging from 10 to 300 kDa. This led to their effective rejection in the first ultrafiltration step by membranes with MCWO = 10–100 kDa but poor rejection by the 300 KDa membrane. The lipopeptides were recovered at 90% purity (in relation to protein) and with 2.34 enrichment in the permeate of the second ultrafiltration step with the 100 KDa membrane upon addition of 75% ethanol.
Resumo:
BACKGROUND: Evidence suggests the wide variation in platelet response within the population is genetically controlled. Unraveling the complex relationship between sequence variation and platelet phenotype requires accurate and reproducible measurement of platelet response. OBJECTIVE: To develop a methodology suitable for measuring signaling pathway-specific platelet phenotype, to use this to measure platelet response in a large cohort, and to demonstrate the effect size of sequence variation in a relevant model gene. METHODS: Three established platelet assays were evaluated: mobilization of [Ca(2+)](i), aggregometry and flow cytometry, each in response to adenosine 5'-diphosphate (ADP) or the glycoprotein (GP) VI-specific crosslinked collagen-related peptide (CRP). Flow cytometric measurement of fibrinogen binding and P-selectin expression in response to a single, intermediate dose of each agonist gave the best combination of reproducibility and inter-individual variability and was used to measure the platelet response in 506 healthy volunteers. Pathway specificity was ensured by blocking the main subsidiary signaling pathways. RESULTS: Individuals were identified who were hypo- or hyper-responders for both pathways, or who had differential responses to the two agonists, or between outcomes. 89 individuals, retested three months later using the same methodology, showed high concordance between the two visits in all four assays (r(2) = 0.872, 0.868, 0.766 and 0.549); all subjects retaining their phenotype at recall. The effect of sequence variation at the GP6 locus accounted for approximately 35% of the variation in the CRP-XL response. CONCLUSION: Genotyping-phenotype association studies in a well-characterized, large cohort provides a powerful strategy to measure the effect of sequence variation in genes regulating the platelet response.
Resumo:
The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.