53 resultados para hydro-meteorological disasters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of hydro- and organo-supergelators have been synthesised via coupling of simple bis aromaticureas via alkyl amide linkages. These bis amide-aromatic-ureas exhibited reduced critical gelator concentrations, improved gelator stability, mechanical and dye removal properties for potential use in water purification, in comparison to related bis aromatic-ureas. Systematic structure studies via variation of the bis amide-aromatic-urea linker length as well as functionalization of the terminal aromatic moieties have enabled control over the gel properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of meteorological records from four stations (Chittagong, Cox’s Bazar, Rangamati, Sitakunda) in south-eastern Bangladesh show coherent changes in climate over the past three decades. Mean maximum daily temperatures have increased between 1980 and 2013 by ca. 0.4 to 0.6°C per decade, with changes of comparable magnitude in individual seasons. The increase in mean maximum daily temperature is associated with decreased cloud cover and wind speed, particularly in the pre- and post-monsoon seasons. During these two seasons, the correlation between changes in maximum temperature and clouds is between -0.5 and -0.7; the correlation with wind speed is weaker although similar values are obtained in some seasons. Changes in mean daily minimum (and hence mean) temperature differ between the northern and southern part of the basin: northern stations show a decrease in mean daily minimum temperature during the post-monsoon season of between 0.2 and 0.5°C per decade while southern stations show an increase of ca. 0.1 to 0.4°C per decade during the pre-monsoon and monsoon seasons. In contrast to the significant changes in temperature, there is no trend in mean or total precipitation at any station. However, there is a significant increase in the number of rain days at the northern sites during the monsoon season, with an increase per decade of 3 days in Sitakunda and 7 days at Rangamati. These climate changes could have a significant impact on the hydrology of the Halda Basin, which supplies water to Chittagong and is the major pisciculture centre in Bangladesh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing urban meteorological networks have an important role to play as test beds for inexpensive and more sustainable measurement techniques that are now becoming possible in our increasingly smart cities. The Birmingham Urban Climate Laboratory (BUCL) is a near-real-time, high-resolution urban meteorological network (UMN) of automatic weather stations and inexpensive, nonstandard air temperature sensors. The network has recently been implemented with an initial focus on monitoring urban heat, infrastructure, and health applications. A number of UMNs exist worldwide; however, BUCL is novel in its density, the low-cost nature of the sensors, and the use of proprietary Wi-Fi networks. This paper provides an overview of the logistical aspects of implementing a UMN test bed at such a density, including selecting appropriate urban sites; testing and calibrating low-cost, nonstandard equipment; implementing strict quality-assurance/quality-control mechanisms (including metadata); and utilizing preexisting Wi-Fi networks to transmit data. Also included are visualizations of data collected by the network, including data from the July 2013 U.K. heatwave as well as highlighting potential applications. The paper is an open invitation to use the facility as a test bed for evaluating models and/or other nonstandard observation techniques such as those generated via crowdsourcing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist. As numerical weather prediction models continue to improve, operational centres are increasingly using the meteorological output from these to drive hydrological models, creating hydrometeorological systems capable of forecasting river flow and flood events at much longer lead times than has previously been possible. Furthermore, developments in, for example, modelling capabilities, data and resources in recent years have made it possible to produce global scale flood forecasting systems. In this paper, the current state of operational large scale flood forecasting is discussed, including probabilistic forecasting of floods using ensemble prediction systems. Six state-of-the-art operational large scale flood forecasting systems are reviewed, describing similarities and differences in their approaches to forecasting floods at the global and continental scale. Currently, operational systems have the capability to produce coarse-scale discharge forecasts in the medium-range and disseminate forecasts and, in some cases, early warning products, in real time across the globe, in support of national forecasting capabilities. With improvements in seasonal weather forecasting, future advances may include more seamless hydrological forecasting at the global scale, alongside a move towards multi-model forecasts and grand ensemble techniques, responding to the requirement of developing multi-hazard early warning systems for disaster risk reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field campaign LOFZY 2005 (LOFoten ZYklonen, engl.: Cyclones) was carried out in the frame of Collaborative Research Centre 512, which deals with low-pressure systems (cyclones) and the climate system of the North Atlantic. Cyclones are of special interest due to their influence on the interaction between atmosphere and ocean. Cyclone activity in the northern part of the Atlantic Ocean is notably high and is of particular importance for the entire Atlantic Ocean. An area of maximum precipitation exists in front of the Norwegian Lofoten islands. One aim of the LOFZY field campaign was to clarify the role cyclones play in the interaction of ocean and atmosphere. In order to obtain a comprehensive dataset of cyclone activity and ocean-atmosphere interaction a field experiment was carried out in the Lofoten region during March and April 2005. Employed platforms were the Irish research vessel RV Celtic Explorer which conducted a meteorological (radiosondes, standard parameters, observations) and an oceanographic (CTD) program. The German research aircraft Falcon accomplished eight flight missions (between 4-21 March) to observe synoptic conditions with high spatial and temporal resolution. In addition 23 autonomous marine buoys were deployed in advance of the campaign in the observed area to measure drift, air-temperature and -pressure and water-temperature. In addition to the published datasets several other measurements were performed during the experiment. Corresonding datasets will be published in the near future and are available on request. Details about all used platforms and sensors and all performed measurements are listed in the fieldreport. The following datasets are available on request: ground data at RV Celtic Explorer