90 resultados para feminism in the twenty-first century
Resumo:
Purpose – The purpose of this paper is to examine the critical assumptions lying behind the Anglo American model of corporate governance. Design/methodology/approach – Literature review examining the concept of a nexus of contracts underpinning agency theory which, it is argued, act as the platform for neo-liberal corporate governance focusing on shareholder wealth creation. Findings – The paper highlights the unaddressed critical challenge of why eighteenth century ownership structures are readily adopted in the twenty-first century. Social implications – A re-examination of wealth creation and wealth redistribution. Originality/value – The paper is highly original due to the fact that few contributions have been made in the area of rethinking shareholder value.
Resumo:
Considerable progress has been made in understanding the present and future regional and global sea level in the 2 years since the publication of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. Here, we evaluate how the new results affect the AR5’s assessment of (i) historical sea level rise, including attribution of that rise and implications for the sea level budget, (ii) projections of the components and of total global mean sea level (GMSL), and (iii) projections of regional variability and emergence of the anthropogenic signal. In each of these cases, new work largely provides additional evidence in support of the AR5 assessment, providing greater confidence in those findings. Recent analyses confirm the twentieth century sea level rise, with some analyses showing a slightly smaller rate before 1990 and some a slightly larger value than reported in the AR5. There is now more evidence of an acceleration in the rate of rise. Ongoing ocean heat uptake and associated thermal expansion have continued since 2000, and are consistent with ocean thermal expansion reported in the AR5. A significant amount of heat is being stored deeper in the water column, with a larger rate of heat uptake since 2000 compared to the previous decades and with the largest storage in the Southern Ocean. The first formal detection studies for ocean thermal expansion and glacier mass loss since the AR5 have confirmed the AR5 finding of a significant anthropogenic contribution to sea level rise over the last 50 years. New projections of glacier loss from two regions suggest smaller contributions to GMSL rise from these regions than in studies assessed by the AR5; additional regional studies are required to further assess whether there are broader implications of these results. Mass loss from the Greenland Ice Sheet, primarily as a result of increased surface melting, and from the Antarctic Ice Sheet, primarily as a result of increased ice discharge, has accelerated. The largest estimates of acceleration in mass loss from the two ice sheets for 2003–2013 equal or exceed the acceleration of GMSL rise calculated from the satellite altimeter sea level record over the longer period of 1993–2014. However, when increased mass gain in land water storage and parts of East Antarctica, and decreased mass loss from glaciers in Alaska and some other regions are taken into account, the net acceleration in the ocean mass gain is consistent with the satellite altimeter record. New studies suggest that a marine ice sheet instability (MISI) may have been initiated in parts of the West Antarctic Ice Sheet (WAIS), but that it will affect only a limited number of ice streams in the twenty-first century. New projections of mass loss from the Greenland and Antarctic Ice Sheets by 2100, including a contribution from parts of WAIS undergoing unstable retreat, suggest a contribution that falls largely within the likely range (i.e., two thirds probability) of the AR5. These new results increase confidence in the AR5 likely range, indicating that there is a greater probability that sea level rise by 2100 will lie in this range with a corresponding decrease in the likelihood of an additional contribution of several tens of centimeters above the likely range. In view of the comparatively limited state of knowledge and understanding of rapid ice sheet dynamics, we continue to think that it is not yet possible to make reliable quantitative estimates of future GMSL rise outside the likely range. Projections of twenty-first century GMSL rise published since the AR5 depend on results from expert elicitation, but we have low confidence in conclusions based on these approaches. New work on regional projections and emergence of the anthropogenic signal suggests that the two commonly predicted features of future regional sea level change (the increasing tilt across the Antarctic Circumpolar Current and the dipole in the North Atlantic) are related to regional changes in wind stress and surface heat flux. Moreover, it is expected that sea level change in response to anthropogenic forcing, particularly in regions of relatively low unforced variability such as the low-latitude Atlantic, will be detectable over most of the ocean by 2040. The east-west contrast of sea level trends in the Pacific observed since the early 1990s cannot be satisfactorily accounted for by climate models, nor yet definitively attributed either to unforced variability or forced climate change.
Resumo:
The essay uncovers evidence for the construction of the ‘woman author’ in the largely male vogue for bawdy burlesque poetry by tracing the circulation of a pair of verses through seventeenth-century manuscript and print miscellanies. It argues that just as these verses are reworked and recontextualised through the process of transmission, so to their ‘authors’ are re-embodied and ascribed different identities in different publication contexts. Female-voiced bawdy poetry raises particular problems for authorial attribution, rather than searching for the real woman behind the text, the essay examines how the ‘authors’ of female-voiced bawdy poetry were produced and reproduced through shifting formal frameworks and socioliterary networks.
Resumo:
One of the greatest challenges we face in the twenty-first century is to sustainably feed nine to ten billion people by 2050 while at the same time reducing environmental impact (e.g. greenhouse gas (GHG) emissions, biodiversity loss, land use change and loss of ecosystem services). To this end, food security must be delivered. According to the United Nations definition, ‘food security exists when all people, at all times, have physical and economic access to sufficient,safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life’. At the same time as delivering food security, we must also reduce the environmental impact of food production. Future climate change will make an impact upon food production. On the other hand, agriculture contributes up to about 30% of the anthropogenic GHG emissions that drive climate change. The aim of this review is to outline some of the likely impacts of climate change on agriculture, the mitigation measures available within agriculture to reduce GHG emissions and outlines the very significant challenge of feeding nine to ten billion people sustainably under a future climate, with reduced emissions of GHG. Each challenge is in itself enormous, requiring solutions that co-deliver on all aspects. We conclude that the status quo is not an option, and tinkering with the current production systems is unlikely to deliver the food and ecosystems services we need in the future; radical changes in production and consumption are likely to be required over the coming decades.
Resumo:
By the turn of the twenty-first century, UNDP had embraced a new form of funding based on ‘cost-sharing’, with this source accounting for 51 per cent of the organisation’s total expenditure worldwide in 2000. Unlike the traditional donor - recipient relationship so common with development projects, the new cost-sharing modality has created a situation whereby UNDP local offices become ‘subcontractors’ and agencies of the recipient countries become ‘clients’. This paper explores this transition in the context of Brazil, focusing on how the new modality may have compromised UNDP’s ability to promote Sustainable Human Development, as established in its mandate. The great enthusiasm for this modality within the UN system and its potential application to other developing countries increase the importance of a systematic assessment of its impact and developmental consequences.
Resumo:
We separate and quantify the sources of uncertainty in projections of regional (*2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.
Resumo:
Wind generated waves at the sea surface are of outstanding importance for both their practical relevance in many aspects, such as coastal erosion, protection, or safety of navigation, and for their scientific relevance in modifying fluxes at the air-sea interface. So far long-term changes in ocean wave climate have been studied mostly from a regional perspective with global dynamical studies emerging only recently. Here a global wave climate study is presented, in which a global wave model (WAM) is driven by atmospheric forcing from a global climate model (ECHAM5) for present day and potential future climate conditions represented by the IPCC (Intergovernmental Panel for Climate Change) A1B emission scenario. It is found that changes in mean and extreme wave climate towards the end of the twenty-first century are small to moderate, with the largest signals being a poleward shift in the annual mean and extreme significant wave heights in the mid-latitudes of both hemispheres, more pronounced in the Southern Hemisphere, and most likely associated with a corresponding shift in mid-latitude storm tracks. These changes are broadly consistent with results from the few studies available so far. The projected changes in the mean wave periods, associated with the changes in the wave climate in the mid to high latitudes, are also shown, revealing a moderate increase in the equatorial eastern side of the ocean basins. This study presents a step forward towards a larger ensemble of global wave climate projections required to better assess robustness and uncertainty of potential future wave climate change.
Resumo:
A strong correlation between the speed of the eddy-driven jet and the width of the Hadley cell is found to exist in the Southern Hemisphere, both in reanalysis data and in twenty-first-century integrations from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report multimodel archive. Analysis of the space–time spectra of eddy momentum flux reveals that variations in eddy-driven jet speed are related to changes in the mean phase speed of midlatitude eddies. An increase in eddy phase speeds induces a poleward shift of the critical latitudes and a poleward expansion of the region of subtropical wave breaking. The associated changes in eddy momentum flux convergence are balanced by anomalous meridional winds consistent with a wider Hadley cell. At the same time, faster eddies are also associated with a strengthened poleward eddy momentum flux, sustaining a stronger westerly jet in midlatitudes. The proposed mechanism is consistent with the seasonal dependence of the interannual variability of the Hadley cell width and appears to explain at least part of the projected twenty-first-century trends.
Resumo:
Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation. Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values. This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure. For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies. The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.
Resumo:
Silchester is the site of a major late Iron Age and Roman town (Calleva Atrebatum), situated in northern Hampshire (England (UK)) and occupied between the late first century BC and the fifth or sixth century AD. Extensive evidence of the nature of the buildings and the plan of the town was obtained from excavations undertaken between 1890 and 1909. The purpose of this study was to use soil geochemical analyses to reinforce the archaeological evidence particularly with reference to potential metal working at the site. Soil analysis has been used previously to distinguish different functions or land use activity over a site and to aid identification and interpretation of settlement features (Entwistle et al., 2000). Samples were taken from two areas of the excavation on a 1-metre grid. Firstly from an area of some 500 square metres from contexts of late first/early second century AD date throughout the entirety of a large 'town house' (House 1) from which there was prima facie evidence of metalworking.
Resumo:
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey-Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km(2) reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943-1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02-0.03 degrees Ca-1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
A model-based assessment of the effects of projected climate change on the water resources of Jordan
Resumo:
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.
Resumo:
The tides of globalization and the unsteady surges and distortions in the evolution of the European Union are causing identities and cultures to be in a state of flux. Education is used by politicians as a major lever for political and social change through micro-management, but it is a crude tool. There can, however, be opportunities within educational experience for individual learners to gain strong, reflexive, multiple identities and multiple citizenship through the engagement of their creative energies. It has been argued that the twenty-first century needs a new kind of creativity characterized by unselfishness, caring and compassion—still involving monetary wealth, but resulting in a healthy planet and healthy people. Creativity and its economically derived relation, innovation, have become `buzz words' of our times. They are often misconstrued, misunderstood and plainly misused within educational conversations. The small-scale pan-European research study upon which this article is founded discovered that more emphasis needs to be placed on creative leadership, empowering teachers and learners, reducing pupils' fear of school, balancing teaching approaches, and ensuring that the curriculum and assessment are responsive to the needs of individual learners. These factors are key to building strong educational provision that harnesses the creative potential of learners, teachers and other stakeholders, values what it is to be human and creates a foundation upon which to build strong, morally based, consistent, participative democracies.
Resumo:
Irreversible binding of key flavour disulphides to ovalbumin has been shown previously to occur in model systems. The extent of binding is determined by the availability of the sulphydryl groups to participate in disulphide exchange, influenced either by pH, or the state of the protein (native or heat-denatured). In this study, two further proteins, one with sulphydryl groups available in the native state (beta-lactoglobulin) and one with no sulphydryl groups in the native state (lysozyme) were used to confirm this hypothesis. When the investigation was extended to real food systems, a similar effect was shown when a commercial meat flavouring containing disulphides was added to heat-denatured ovalbumin. Furthermore, comparison of the volatiles generated from onions, cooked either alone, or in the presence of meat, showed a significant reduction of key onion-derived disulphides when cooked in the presence of meat, and an even greater reduction of trisulphides. These findings may have implications for consumer acceptance of food products; where these compounds are used as flavourings or where they occur naturally.