57 resultados para fault correction
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
The enhanced radar return associated with melting snow, ‘the bright band’, can lead to large overestimates of rain rates. Most correction schemes rely on fitting the radar observations to a vertical profile of reflectivity (VPR) which includes the bright band enhancement. Observations show that the VPR is very variable in space and time; large enhancements occur for melting snow, but none for the melting graupel in embedded convection. Applying a bright band VPR correction to a region of embedded convection will lead to a severe underestimate of rainfall. We revive an earlier suggestion that high values of the linear depolarisation ratio (LDR) are an excellent means of detecting when bright band contamination is occurring and that the value of LDR may be used to correct the value of Z in the bright band.
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
The growth (melt) rate of frazil ice is governed by heat transfer away from (towards) the ice crystal, which can be represented by the Nusselt number. We discuss choices for the Nusselt number and turbulent length scale appropriate for frazil ice and note an inaccuracy in the study ”Frazil evolution in channels“ by Lars Hammar and Hung-Tao Shen, which has also led to potentially significant errors in several other papers. We correct this error and suggest an appropriate strategy for determining the Nusselt number applicable to frazil ice growth and melting.
Resumo:
This paper considers supply dynamics in the context of the Irish residential market. The analysis, in a multiple error-correction framework, reveals that although developers did respond to disequilibrium in supply, the rate of adjustment was relatively slow. In contrast, however, disequilibrium in demand did not impact upon supply, suggesting that inelastic supply conditions could explain the prolonged nature of the boom in the Irish market. Increased elasticity in the later stages of the boom may have been a contributory factor in the extent of the house price falls observed in recent years.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
The extent to which cognitive models of development and maintenance of depression apply to adolescents is largely untested, despite the widespread application of Cognitive Behavior Therapy (CBT) for depressed adolescents. Cognitive models suggest that negative cognitions, including interpretation bias, play a role in etiology and maintenance of depression. Given that cognitive development is incomplete by the teenage years and that CBT is not superior to non-cognitive treatments in the treatment of adolescent depression, it is important to test the underlying model. The primary aim of this study was to test the hypothesis that interpretation biases are exhibited by depressed adolescents. Four groups of adolescents were recruited: clinically-referred depressed (n = 27), clinically-referred non-depressed (n = 24), community with elevated depression symptoms (n = 42) and healthy community (n = 150). Participants completed a 20 item ambiguous scenarios questionnaire. Clinically-referred depressed adolescents made significantly more negative interpretations and rated scenarios as less pleasant than all other groups. The results suggest that this element of the cognitive model of depression is applicable to adolescents. Other aspects of the model should be tested so that cognitive treatment can be modified or adapted if necessary.
Resumo:
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.
Resumo:
Current commercially available Doppler lidars provide an economical and robust solution for measuring vertical and horizontal wind velocities, together with the ability to provide co- and cross-polarised backscatter profiles. The high temporal resolution of these instruments allows turbulent properties to be obtained from studying the variation in radial velocities. However, the instrument specifications mean that certain characteristics, especially the background noise behaviour, become a limiting factor for the instrument sensitivity in regions where the aerosol load is low. Turbulent calculations require an accurate estimate of the contribution from velocity uncertainty estimates, which are directly related to the signal-to-noise ratio. Any bias in the signal-to-noise ratio will propagate through as a bias in turbulent properties. In this paper we present a method to correct for artefacts in the background noise behaviour of commercially available Doppler lidars and reduce the signal-to-noise ratio threshold used to discriminate between noise, and cloud or aerosol signals. We show that, for Doppler lidars operating continuously at a number of locations in Finland, the data availability can be increased by as much as 50 % after performing this background correction and subsequent reduction in the threshold. The reduction in bias also greatly improves subsequent calculations of turbulent properties in weak signal regimes.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.