96 resultados para extreme weather events
Resumo:
The evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing. As a result, scientific interest is rapidly shifting from detection and attribution of global climate change to prediction of its impacts at the regional scale. However, nearly everything we have any confidence in when it comes to climate change is related to global patterns of surface temperature, which are primarily controlled by thermodynamics. In contrast, we have much less confidence in atmospheric circulation aspects of climate change, which are primarily controlled by dynamics and exert a strong control on regional climate. Model projections of circulation-related fields, including precipitation, show a wide range of possible outcomes, even on centennial timescales. Sources of uncertainty include low-frequency chaotic variability and the sensitivity to model error of the circulation response to climate forcing. As the circulation response to external forcing appears to project strongly onto existing patterns of variability, knowledge of errors in the dynamics of variability may provide some constraints on model projections. Nevertheless, higher scientific confidence in circulation-related aspects of climate change will be difficult to obtain. For effective decision-making, it is necessary to move to a more explicitly probabilistic, risk-based approach.
Resumo:
In September 2013, the 5th Assessment Report (5AR) of the International Panel on Climate Change (IPCC) has been released. Taking the 5AR cli-mate change scenarios into account, the World Bank published an earli-er report on climate change and its impacts on selected hot spot re-gions, including Southeast Asia. Currently, dynamical and statistical-dynamical downscaling efforts are underway to obtain higher resolution and more robust regional climate change projections for tropical South-east Asia, including Vietnam. Such initiatives are formalized under the World Meteorological Organization (WMO) Coordinated Regional Dynamic Downscaling Experiment (CORDEX) East Asia and Southeast Asia and also take place in climate change impact projects such as the joint Vietnam-ese-German project “Environmental and Water Protection Technologies of Coastal Zones in Vietnam (EWATEC-COAST)”. In this contribution, the lat-est assessments for changes in temperature, precipitation, sea level, and tropical cyclones (TCs) under the 5AR Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 are reviewed. Special emphasis is put on changes in extreme events like heat waves and/or heavy precipita-tion. A regional focus is Vietnam south of 16°N. A continued increase in mean near surface temperature is projected, reaching up to 5°C at the end of this century in northern Vietnam un-der the high greenhouse-gas forcing scenario RCP8.5. Overall, project-ed changes in annual precipitation are small, but there is a tendency of more rainfall in the boreal winter dry season. Unprecedented heat waves and an increase in extreme precipitation events are projected by both global and regional climate models. Globally, TCs are projected to decrease in number, but an increase in intensity of peak winds and rain-fall in the inner core region is estimated. Though an assessment of changes in land-falling frequency in Vietnam is uncertain due to difficul-ties in assessing changes in TC tracks, some work indicates a reduction in the number of land-falling TCs in Vietnam. Sea level may rise by 75-100 cm until the end of the century with the Vietnamese coastline experienc-ing 10-15% higher rise than on global average. Given the large rice and aquaculture production in the Mekong and Red River Deltas, that are both prone to TC-related storm surges and flooding, this poses a challenge to foodsecurity and protection of coastal population and assets.
Resumo:
The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.
Resumo:
The collective representation within global models of aerosol, cloud, precipitation, and their radiative properties remains unsatisfactory. They constitute the largest source of uncertainty in predictions of climatic change and hamper the ability of numerical weather prediction models to forecast high-impact weather events. The joint European Space Agency (ESA)–Japan Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) satellite mission, scheduled for launch in 2018, will help to resolve these weaknesses by providing global profiles of cloud, aerosol, precipitation, and associated radiative properties inferred from a combination of measurements made by its collocated active and passive sensors. EarthCARE will improve our understanding of cloud and aerosol processes by extending the invaluable dataset acquired by the A-Train satellites CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Aqua. Specifically, EarthCARE’s cloud profiling radar, with 7 dB more sensitivity than CloudSat, will detect more thin clouds and its Doppler capability will provide novel information on convection, precipitating ice particle, and raindrop fall speeds. EarthCARE’s 355-nm high-spectral-resolution lidar will measure directly and accurately cloud and aerosol extinction and optical depth. Combining this with backscatter and polarization information should lead to an unprecedented ability to identify aerosol type. The multispectral imager will provide a context for, and the ability to construct, the cloud and aerosol distribution in 3D domains around the narrow 2D retrieved cross section. The consistency of the retrievals will be assessed to within a target of ±10 W m–2 on the (10 km)2 scale by comparing the multiview broadband radiometer observations to the top-of-atmosphere fluxes estimated by 3D radiative transfer models acting on retrieved 3D domains.
Resumo:
Many different performance measures have been developed to evaluate field predictions in meteorology. However, a researcher or practitioner encountering a new or unfamiliar measure may have difficulty in interpreting its results, which may lead to them avoiding new measures and relying on those that are familiar. In the context of evaluating forecasts of extreme events for hydrological applications, this article aims to promote the use of a range of performance measures. Some of the types of performance measures that are introduced in order to demonstrate a six-step approach to tackle a new measure. Using the example of the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble precipitation predictions for the Danube floods of July and August 2002, to show how to use new performance measures with this approach and the way to choose between different performance measures based on their suitability for the task at hand is shown. Copyright © 2008 Royal Meteorological Society
Resumo:
The ability of the HiGEM climate model to represent high-impact, regional, precipitation events is investigated in two ways. The first focusses on a case study of extreme regional accumulation of precipitation during the passage of a summer extra-tropical cyclone across southern England on 20 July 2007 that resulted in a national flooding emergency. The climate model is compared with a global Numerical Weather Prediction (NWP) model and higher resolution, nested limited area models. While the climate model does not simulate the timing and location of the cyclone and associated precipitation as accurately as the NWP simulations, the total accumulated precipitation in all models is similar to the rain gauge estimate across England and Wales. The regional accumulation over the event is insensitive to horizontal resolution for grid spacings ranging from 90km to 4km. Secondly, the free-running climate model reproduces the statistical distribution of daily precipitation accumulations observed in the England-Wales precipitation record. The model distribution diverges increasingly from the record for longer accumulation periods with a consistent under-representation of more intense multi-day accumulations. This may indicate a lack of low-frequency variability associated with weather regime persistence. Despite this, the overall seasonal and annual precipitation totals from the model are still comparable to those from ERA-Interim.
Resumo:
There is a tremendous desire to attribute causes to weather and climate events that is often challenging from a physical standpoint. Headlines attributing an event solely to either human-induced climate change or natural variability can be misleading when both are invariably in play. The conventional attribution framework struggles with dynamically driven extremes because of the small signal-to-noise ratios and often uncertain nature of the forced changes. Here, we suggest that a different framing is desirable, which asks why such extremes unfold the way they do. Specifically, we suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of the particular event. Some examples briefly illustrated include 'snowmaggedon' in February 2010, superstorm Sandy in October 2012 and supertyphoon Haiyan in November 2013, and, in more detail, the Boulder floods of September 2013, all of which were influenced by high sea surface temperatures that had a discernible human component.
Resumo:
The El Niño/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Niño and La Niña, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1, 2, 3, 4, 5. The 1998–1999 extreme La Niña event that followed the 1997–1998 extreme El Niño event6 switched extreme El Niño-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4, 7. During extreme La Niña events, cold sea surface conditions develop in the central Pacific8, 9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Niño characteristics in response to simulated future greenhouse warming10, 11, 12, but how La Niña will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Niña events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Niño events are conducive to development of the extreme La Niña events. Approximately 75% of the increase occurs in years following extreme El Niño events, thus projecting more frequent swings between opposite extremes from one year to the next.
Resumo:
Snow in the UK is generally associated with synoptic or mesoscale weather systems, thus snowfall during quiescent anticyclonic conditions is surprising and might not even be forecast. Consequently it could present a hazard. Snowfall during anticyclonic freezing fog conditions at Didcot and Hereford in December 2006 is investigated here. These two snowfalls seem to present circumstances in which anthropogenically-produced aerosols could have provided ice nuclei within the freezing fog, and therefore might provide characteristic examples of Anthropogenic Snowfall Events (ASEs).
Resumo:
The purpose of Research Theme 4 (RT4) was to advance understanding of the basic science issues at the heart of the ENSEMBLES project, focusing on the key processes that govern climate variability and change, and that determine the predictability of climate. Particular attention was given to understanding linear and non-linear feedbacks that may lead to climate surprises,and to understanding the factors that govern the probability of extreme events. Improved understanding of these issues will contribute significantly to the quantification and reduction of uncertainty in seasonal to decadal predictions and projections of climate change. RT4 exploited the ENSEMBLES integrations (stream 1) performed in RT2A as well as undertaking its own experimentation to explore key processes within the climate system. It was working at the cutting edge of problems related to climate feedbacks, the interaction between climate variability and climate change � especially how climate change pertains to extreme events, and the predictability of the climate system on a range of time-scales. The statisticalmethodologies developed for extreme event analysis are new and state-of-the-art. The RT4-coordinated experiments, which have been conducted with six different atmospheric GCMs forced by common timeinvariant sea surface temperature (SST) and sea-ice fields (removing some sources of inter-model variability), are designed to help to understand model uncertainty (rather than scenario or initial condition uncertainty) in predictions of the response to greenhouse-gas-induced warming. RT4 links strongly with RT5 on the evaluation of the ENSEMBLES prediction system and feeds back its results to RT1 to guide improvements in the Earth system models and, through its research on predictability, to steer the development of methods for initialising the ensembles
Resumo:
The occurrence of wind storms in Central Europe is investigated with respect to large-scale atmospheric flow and local wind speeds in the investigation area. Two different methods of storm identification are applied for Central Europe as the target region: one based on characteristics of large-scale flow (circulation weather types, CWT) and the other on the occurrence of extreme wind speeds. The identified events are examined with respect to the NAO phases and CWTs under which they occur. Pressure patterns, wind speeds and cyclone tracks are investigated for storms assigned to different CWTs. Investigations are based on ERA40 reanalysis data. It is shown that about 80% of the storm days in Central Europe are connected with westerly flow and that Central European storm events primarily occur during a moderately positive NAO phase, while strongly positive NAO phases (6.4% of all days) account for more than 20% of the storms. A storm occurs over Central Europe during about 10% of the days with a strong positive NAO index. The most frequent pathway of cyclone systems associated with storms over Central Europe leads from the North Atlantic over the British Isles, North Sea and southern Scandinavia into the Baltic Sea. The mean intensity of the systems typically reaches its maximum near the British Isles. Differences between the characteristics for storms identified from the CWT identification procedure (gale days, based on MSLP fields) and those from extreme winds at Central European grid points are small, even though only 70% of the storm days agree. While most storms occur during westerly flow situations, specific characteristics of storms during the other CWTs are also considered. Copyright © 2009 Royal Meteorological Society
Resumo:
We characterize near-surface ocean diurnal warm-layer events, using satellite observations and fields from numerical weather forecasting. The study covers April to September, 2006, over the area 11°W to 17°E and 35°N to 57°N, with 0.1° cells. We use hourly satellite SSTs from which peak amplitudes of diurnal cycles in SST (dSSTs) can be estimated with error ∼0.3 K. The diurnal excursions of SST observed are spatially and temporally coherent. The largest dSSTs exceed 6 K, affect 0.01% of the surface, and are seen in the Mediterranean, North and Irish Seas. There is an anti-correlation between the magnitude and the horizontal length scale of dSST events. Events wherein dSST exceeds 4 K have length scales of ≤40 km. From the frequency distribution of different measures of wind-speed minima, we infer that extreme dSST maxima arise where conditions of low wind speed are sustained from early morning to mid afternoon.
Resumo:
Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.
Resumo:
During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series for Germany are quantified based on potential losses using empirical models. Two reanalysis data sets and observations from German weather stations are considered for 30 winters. Histograms of events exceeding selected return levels (1-, 2- and 5-year) are derived. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Over 4000 years of general circulation model (GCM) simulations forced with current climate conditions are analysed to provide a better assessment of historical return periods. Estimations differ between distributions, for example 40 to 65 years for the 1990 series. For such less frequent series, estimates obtained with the Poisson distribution clearly deviate from empirical data. The negative binomial distribution provides better estimates, even though a sensitivity to return level and data set is identified. The consideration of GCM data permits a strong reduction of uncertainties. The present results support the importance of considering explicitly clustering of losses for an adequate risk assessment for economical applications.