75 resultados para embedded computing
                                
Resumo:
Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.
                                
                                
                                
Resumo:
                                Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude) at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1) was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.
The mid-level stratus cloud was vertically thin (~400 m), horizontally extensive (covering 100 s of km) and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm) stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively). No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1
                                
                                
Resumo:
Analogue computers provide actual rather than virtual representations of model systems. They are powerful and engaging computing machines that are cheap and simple to build. This two-part Retronics article helps you build (and understand!) your own analogue computer to simulate the Lorenz butterfly that's become iconic for Chaos theory.
                                
                                
                                
Resumo:
Markowitz showed that assets can be combined to produce an 'Efficient' portfolio that will give the highest level of portfolio return for any level of portfolio risk, as measured by the variance or standard deviation. These portfolios can then be connected to generate what is termed an 'Efficient Frontier' (EF). In this paper we discuss the calculation of the Efficient Frontier for combinations of assets, again using the spreadsheet Optimiser. To illustrate the derivation of the Efficient Frontier, we use the data from the Investment Property Databank Long Term Index of Investment Returns for the period 1971 to 1993. Many investors might require a certain specific level of holding or a restriction on holdings in at least some of the assets. Such additional constraints may be readily incorporated into the model to generate a constrained EF with upper and/or lower bounds. This can then be compared with the unconstrained EF to see whether the reduction in return is acceptable. To see the effect that these additional constraints may have, we adopt a fairly typical pension fund profile, with no more than 20% of the total held in Property. The paper shows that it is now relatively easy to use the Optimiser available in at least one spreadsheet (EXCEL) to calculate efficient portfolios for various levels of risk and return, both constrained and unconstrained, so as to be able to generate any number of Efficient Frontiers.
                                
                                
                                
Resumo:
Idealised convection-permitting simulations are used to quantify the impact of embedded convection on the precipitation generated by moist flow over midlatitude mountain ridges. A broad range of mountain dimensions and moist stabilities are considered to encompass a spectrum of physically plausible flows. The simulations reveal that convection only enhances orographic precipitation in cap clouds that are otherwise unable to efficiently convert cloud condensate into precipitate. For tall and wide mountains (e.g. the Washington Cascades or the southern Andes), precipitate forms efficiently through vapour deposition and collection, even in the absence of embedded convection. When embedded convection develops in such clouds, it produces competing effects (enhanced condensation in updraughts and enhanced evaporation through turbulent mixing and compensating subsidence) that cancel to yield little net change in precipitation. By contrast, convection strongly enhances precipitation over short and narrow mountains (e.g. the UK Pennines or the Oregon Coastal Range) where precipitation formation is otherwise highly inefficient. Although cancellation between increased condensation and evaporation still occurs, the enhanced precipitation formation within the convective updraughts leads to a net increase in precipitation efficiency. The simulations are physically interpreted through non-dimensional diagnostics and relevant time-scales that govern advective, microphysical, and convective processes.
                                
Resumo:
The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.
                                
Resumo:
OBJECTIVES: The prediction of protein structure and the precise understanding of protein folding and unfolding processes remains one of the greatest challenges in structural biology and bioinformatics. Computer simulations based on molecular dynamics (MD) are at the forefront of the effort to gain a deeper understanding of these complex processes. Currently, these MD simulations are usually on the order of tens of nanoseconds, generate a large amount of conformational data and are computationally expensive. More and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. METHODS: To adequately organize, manage, and analyze the data generated by unfolding simulation studies, we designed a data warehouse system that is embedded in a grid environment to facilitate the seamless sharing of available computer resources and thus enable many groups to share complex molecular dynamics simulations on a more regular basis. RESULTS: To gain insight into the conformational fluctuations and stability of the monomeric forms of the amyloidogenic protein transthyretin (TTR), molecular dynamics unfolding simulations of the monomer of human TTR have been conducted. Trajectory data and meta-data of the wild-type (WT) protein and the highly amyloidogenic variant L55P-TTR represent the test case for the data warehouse. CONCLUSIONS: Web and grid services, especially pre-defined data mining services that can run on or 'near' the data repository of the data warehouse, are likely to play a pivotal role in the analysis of molecular dynamics unfolding data.
                                
Resumo:
Pocket Data Mining (PDM) is our new term describing collaborative mining of streaming data in mobile and distributed computing environments. With sheer amounts of data streams are now available for subscription on our smart mobile phones, the potential of using this data for decision making using data stream mining techniques has now been achievable owing to the increasing power of these handheld devices. Wireless communication among these devices using Bluetooth and WiFi technologies has opened the door wide for collaborative mining among the mobile devices within the same range that are running data mining techniques targeting the same application. This paper proposes a new architecture that we have prototyped for realizing the significant applications in this area. We have proposed using mobile software agents in this application for several reasons. Most importantly the autonomic intelligent behaviour of the agent technology has been the driving force for using it in this application. Other efficiency reasons are discussed in details in this paper. Experimental results showing the feasibility of the proposed architecture are presented and discussed.