59 resultados para dotted rings and stripes
Resumo:
We embark upon a systematic investigation of operator space structure of JC*-triples via a study of the TROs (ternary rings of operators) they generate. Our approach is to introduce and develop a variety of universal objects, including universal TROs, by which means we are able to describe all possible operator space structures of a JC*-triple. Via the concept of reversibility we obtain characterisations of universal TROs over a wide range of examples. We apply our results to obtain explicit descriptions of operator space structures of Cartan factors regardless of dimension
Resumo:
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin- 3-yl)-2,2′ : 6′,2′′-terpyridine (CyMe4-hemi-BTBP) has been synthesized and its interactions with Am(III),U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UVabsorption spectrophotometry, NMR studies and ESI-MS. Structures of 1 : 1 complexes with Eu(III), Ce(III) and the linear uranyl (UO2 2+) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III)complex is higher. 1H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1 : 1 complexes with Eu(III), Ce(III) and Yb(III), while both 1 : 1 and 1 : 2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2 : 2 helical complexes was formed with Cu(I), with a slight preference (1.4 : 1) for a single directional isomer. In contrast, a 1 : 1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III)from Ln(III) by quadridentate N-donor ligands.
Resumo:
Reaction of the 4-R-benzaldehyde thiosemicarbazones (denoted in general as L-R; R = OCH(3), CH(3), H, Cl and NO(2)) with trans-[Pd(PPh(3))(2)Cl(2)] afforded a group of mixed-ligand complexes (denoted in general as 1-R) incorporating a N,S-coordinated thiosemicarbazone. a triphenylphosphine and a chloride. Similar reaction with Na(2)[PdCl(4)] afforded a family of bis-thiosemicarbazone complexes (denoted in general as 2-R), where each ligand is N,S-coordinated. Crystal structures of 1-CH(3), 1-NO(2), 2-OCH(3), 2-NO(2) and L-NO(2) have been determined. In all the complexes the thiosemicarbazones are coordinated to the metal center, via dissociation of the acidic proton, as bidentate N,S-donors forming five-membered chelate rings. With reference to the structure of the uncoordinated thiosemicarbazone, this coordination mode is associated with a conformational change around the C=N bond. All the 1-R and 2-R complexes display intense absorptions in the visible region. Catalytic activity of the 1-R and 2-R complexes towards some C-C coupling reactions (e.g. Suzuki, Heck and Sonogashira) has been examined and while both are found to be efficient catalysts, 1-R is much better catalyst than 2-R.
Resumo:
Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH(2)) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH(2)) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [Co(III)(dmoInH)(2)]Cl center dot 2H(2)O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [Co(III)(dmoInH) (2)]Cl center dot 2H(2)O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [Co(III)(d-moBH)(2)] Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH(2), compared to dmoBH(2), in the solid state. Comparing the structure of the [CoIII(dmoInH)(2)]Cl center dot 2H(2)O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.
Resumo:
This paper describes a simple technique for the patterning of glia and neurons. The integration of neuronal patterning to Multi-Electrode Arrays (MEAs), planar patch clamp and silicon based ‘lab on a chip’ technologies necessitates the development of a microfabrication-compatible method, which will be reliable and easy to implement. In this study a highly consistent, straightforward and cost effective cell patterning scheme has been developed. It is based on two common ingredients: the polymer parylene-C and horse serum. Parylene-C is deposited and photo-lithographically patterned on silicon oxide (SiO2) surfaces. Subsequently, the patterns are activated via immersion in horse serum. Compared to non-activated controls, cells on the treated samples exhibited a significantly higher conformity to underlying parylene stripes. The immersion time of the patterns was reduced from 24 to 3 h without compromising the technique. X-ray photoelectron spectroscopy (XPS) analysis of parylene and SiO2 surfaces before and after immersion in horse serum and gel based eluant analysis suggests that the quantity and conformation of proteins on the parylene and SiO2 substrates might be responsible for inducing glial and neuronal patterning.
Resumo:
Radical cations of a soluble rigid tetrathienoacene are capable of forming stable p-dimer dications at ambient temperature when the short backbone becomes extended with conjugated thiophene-2-yl substituents in the a-positions. On the other hand, simple attachment of methyl groups on the a-carbon of the external thiophen-2-yl rings proved sufficient to inhibit the dimerization. Stable radical cationswere also exclusively formed for tetrathienoacene derivatives end-capped with bulky TIPS and phenyl substituents.
Resumo:
Although contraction of human isolated bronchi is mediated mainly by tachykinin NK2 receptors, NK1 receptors, via prostanoid release, contract small-size (approximately 1 mm in diameter) bronchi. Here, we have investigated the presence and biological responses of NK1 receptors in medium-size (2-5 mm in diameter) human isolated bronchi. Specific staining was seen in bronchial sections with an antibody directed against the human NK1 receptor. The selective NK1 receptor agonist, [Sar(9), Met(O2)(11)]SP, contracted about 60% of human isolated bronchial rings. This effect was reduced by two different NK1 receptor antagonists, CP-99,994 and SR 140333. Contraction induced by [Sar(9), Met(O2)(11)]SP was independent of acetylcholine and histamine release and epithelium removal, and was not affected by nitric oxide synthase and cyclooxygenase (COX) inhibition. [Sar(9), Met(O2)(11)]SP increased inositol phosphate (IP) levels, and SR 140333 blocked this increase, in segments of medium- and small-size (approximately 1 mm in diameter) human bronchi. COX inhibition blocked the IP increase induced by [Sar(9), Met(O2)(11)]SP in small-size, but not in medium-size, bronchi. NK1 receptors mediated bronchoconstriction in a large proportion of medium-size human bronchi. Unlike small-size bronchi this effect is independent of prostanoid release, and the results are suggestive of a direct activation of smooth muscle receptors and IP release.
Resumo:
Bis-triazinylphenanthroline ligands (BTPhens), which contain additional alkyl (n-butyl and sec-butyl) groups attached to the triazine rings, have been synthesized, and the effects of this alkyl substitution on their extraction properties with Ln(III) and An(III) cations in simulated nuclear waste solutions have been studied. The speciation of n-butyl-substituted ligand (C4- BTPhen) with some trivalent lanthanide nitrates was elucidated by 1 H-NMR spectroscopic titrations. These experiments have shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at higher Ln(III) concentrations, and the relative stability of 2:1 to 1:1 BTPhen-Ln(III) complexes varied with different lanthanides. As expected, sec-butylsubstituted ligand (sec-C4 BTPhen) showed higher solubility than C4-BTPhen in certain diluents. A greater separation factor (SFAm/Eu = ca. 210) was observed for sec-C4-BTPhen compared to C4-BTPhen (SFAm/Eu = ca. 125) in 1-octanol at 4 M HNO3 solutions. The greater separation factor may be due to the higher solubility of the 2:1 complex for sec-C4-BTPhen at the interface than the 1:1 complex of C4-BTPhen.
Resumo:
Background Recent experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide signaling pathways are intimately intertwined particularly in the vasculature, with mutual attenuation or potentiation of biological responses under control of the soluble guanylyl cyclase (sGC) / phopshodiesterase (PDE) pathway. There is now compelling evidence that part of the NO/sulfide cross talk has a chemical foundation via the formation of S/N-hybrid molecules including thionitrous acid (HSNO) and nitrosopersulfde (SSNO-). The aim of this study was to characterize the bioactive products of the interaction between sulfide and NO metabolites targeting sGC that may potentially regulate vasodilation. Results We found that the chemical interaction of sulfide with NO or nitrosothiols leads to formation of S/N-hybrid metabolites including SSNO- via intermediate formation of HSNO. Contrary to a recent report in the literature but consistent with the transient nature of HSNO, its formation was not detectable by high-resolution mass spectrometry under physiologically relevant conditions. SSNO- is also formed in non-aqueous media by the reaction of nitrite with oxidized sulfur species including colloidal sulfur and polysulfides. SSNO- is stable in the presence of high concentrations of thiols, release NO, and activates sGC in RFL-6 cells in an NO-dependent fashion. Moreover, SSNO- is a potent vasodilator in aortic rings in vitro and lowers blood pressure in rats in vivo. The presence of high concentrations of SOD or thiols does not affect SSNO- mediated sGC activation, while it potentiates and inhibits the effects of the nitroxyl (HNO) donor Angeli's salt, suggesting that HNO release from SSNO- is not involved in sGC activation. Conclusion The reaction between NO and sulfide leads to fomation of S/N-hybrid molecules including SSNO-, releasing NO, activating sGC and inducing vasodilation. SSNO- is considerably more stable than HSNO at pH 7.4 and thus a more likely biological mediator that can account for the chemical cross-talk between NO and sulfide.
Resumo:
High-resolution powder neutron diffraction data collected for the skutterudites MGe1.5S1.5 (M=Co, Rh, Ir) reveal that these materials adopt an ordered skutterudite structure (space group R3¯), in which the anions are ordered in layers perpendicular to the [111] direction. In this ordered structure, the anions form two-crystallographically distinct four-membered rings, with stoichiometry Ge2S2, in which the Ge and S atoms are trans to each other. The transport properties of these materials, which are p-type semiconductors, are discussed in the light of the structural results. The effect of iron substitution in CoGe1.5S1.5 has been investigated. While doping of CoGe1.5S1.5 has a marked effect on both the electrical resistivity and the Seebeck coefficient, these ternary skutterudites exhibit significantly higher electrical resistivities than their binary counterparts.
Resumo:
In a numerical, isopycnal, ocean model the mixing is investigated with the environment of two idealized Agulhas rings, one that splits, and one that remains coherent. The evolution of a passive tracer , initially contained within the rings, shows that tracer leakage is associated with the for mation of filaments in the early stage of ring evolution. These filaments reach down to the ther mocline. In the deepest layers leakage occurs on a larger scale. Self-advection of the rings is ver y irregular , and it is not possible to compute a Lagrangian boundar y i n order to estimate the transport of leakage from the rings. T o describe the processes that gover n tracer leakage, in a coordinate frame moving with the ring a kinematic separatrix is defined in the streamfunction field for the nondivergent flow . Initially , filaments arise because of the elongation of the ring, which is mainly gover ned by an m 5 2 instability that is collaborating with differential rotation. Because of beta, the symmetr y i s destroyed related to the separatrix associated with a stagnation point in the flow . The filament upstream of the stagnation point grows much faster and is associated with the bulk of tracer leakage. Mixing is enhanced by time dependence of the separatrix. As a result, there are no large differences between the leakage from a coherent ring, where the m 5 2 instability equilibrates, and from a splitting ring, where the m 5 2 instability keeps growing, which confir ms that the amount of leakage is mainly gover ned by the ring’ s initial defor mation combined with unsteady self-advection of the ring and not by the splitting of the ring. The decay of tracer content in the ther mocline shows that in the first months up to 40% of the ring water can be mixed with the environment. In deeper layers the decay of tracer content may reach up to 90%.
Resumo:
Solitar y meanders of the Agulhas Current, so-called Natal pulses, may play an important role in the overall dynamics of this current system. Several hypotheses concer ning the triggering of these pulses are tested using sea sur face height and temperature data from satellites. The data show the for mation of pulses in the Natal Bight area at irregular inter vals ranging from 50 to 240 days. Moving downstream at speeds between 10 and 20 km day 2 1 they sometimes reach sizes of up to 300 km. They seem to play a role in the shedding of Agulhas rings that penetrate the South Atlantic. The inter mittent for mation of these solitar y meanders is argued to be most probably related to barotropic instability of the strongly baroclinic Agulhas Current in the Natal Bight. The vorticity structure of the obser ved basic flow is argued to be stable anywhere along its path. However , a proper perturbation of the jet in the Natal Bight area will allow barotropic instability , because the bottom slope there is considerably less steep than elsewhere along the South African east coast. Using satellite altimetr y these perturbations seem to be related to the inter mittent presence of offshore anticyclonic anomalies, both upstream and eastward of the Natal Bight.