67 resultados para distributed parameter systems
Resumo:
During spray drying, emphasis is placed on process optimisation to generate favourable particle morphological and flow properties. The effect of the initial feed solution composition on the drug release from the prepared microparticles is rarely considered. We investigated the effects of solvent composition, feed solution concentration and drug-loading on sodium salicylate, hydrocortisone and triamcinolone release from spray dried Eudragit L100 microparticles. Eudragit L100 is a pH-responsive polymer whose dissolution threshold is pH 6 so dissolution testing of the prepared microparticles at pH 5 and 1.2 illustrated non-polymer controlled burst release. Increasing the water content of the initial ethanolic feed solution significantly reduced hydrocortisone burst release at pH 5, as did reducing the feed solution concentration. These findings caution that changes in feed solution concentration or solvent composition not only affect particles’ morphological characteristics but can also negatively alter their drug release properties. This work also illustrate that drug-free microparticles can have different morphological properties to drug-loaded microparticles. Therefore, process optimisation needs to be carried out using drug-loaded systems. Depending on the physicochemical properties of the encapsulated API, drug-loading can affect the polymer solubility in the initial feed solution with consequent impact on microparticles morphological and release properties.
Resumo:
A new generation of advanced surveillance systems is being conceived as a collection of multi-sensor components such as video, audio and mobile robots interacting in a cooperating manner to enhance situation awareness capabilities to assist surveillance personnel. The prominent issues that these systems face are: the improvement of existing intelligent video surveillance systems, the inclusion of wireless networks, the use of low power sensors, the design architecture, the communication between different components, the fusion of data emerging from different type of sensors, the location of personnel (providers and consumers) and the scalability of the system. This paper focuses on the aspects pertaining to real-time distributed architecture and scalability. For example, to meet real-time requirements, these systems need to process data streams in concurrent environments, designed by taking into account scheduling and synchronisation. The paper proposes a framework for the design of visual surveillance systems based on components derived from the principles of Real Time Networks/Data Oriented Requirements Implementation Scheme (RTN/DORIS). It also proposes the implementation of these components using the well-known middleware technology Common Object Request Broker Architecture (CORBA). Results using this architecture for video surveillance are presented through an implemented prototype.
Resumo:
High rates of nutrient loading from agricultural and urban development have resulted in surface water eutrophication and groundwater contamination in regions of Ontario. In Lake Simcoe (Ontario, Canada), anthropogenic nutrient contributions have contributed to increased algal growth, low hypolimnetic oxygen concentrations, and impaired fish reproduction. An ambitious programme has been initiated to reduce phosphorus loads to the lake, aiming to achieve at least a 40% reduction in phosphorus loads by 2045. Achievement of this target necessitates effective remediation strategies, which will rely upon an improved understanding of controls on nutrient export from tributaries of Lake Simcoe as well as improved understanding of the importance of phosphorus cycling within the lake. In this paper, we describe a new model structure for the integrated dynamic and process-based model INCA-P, which allows fully-distributed applications, suited to branched river networks. We demonstrate application of this model to the Black River, a tributary of Lake Simcoe, and use INCA-P to simulate the fluxes of P entering the lake system, apportion phosphorus among different sources in the catchment, and explore future scenarios of land-use change and nutrient management to identify high priority sites for implementation of watershed best management practises.
Resumo:
This article presents the results of a study that explored the human side of the multimedia experience. We propose a model that assesses quality variation from three distinct levels: the network, the media and the content levels; and from two views: the technical and the user perspective. By facilitating parameter variation at each of the quality levels and from each of the perspectives, we were able to examine their impact on user quality perception. Results show that a significant reduction in frame rate does not proportionally reduce the user's understanding of the presentation independent of technical parameters, that multimedia content type significantly impacts user information assimilation, user level of enjoyment, and user perception of quality, and that the device display type impacts user information assimilation and user perception of quality. Finally, to ensure the transfer of information, low-level abstraction (network-level) parameters, such as delay and jitter, should be adapted; to maintain the user's level of enjoyment, high-level abstraction quality parameters (content-level), such as the appropriate use of display screens, should be adapted.
Resumo:
Distributed multimedia supports a symbiotic infotainment duality, i.e. the ability to transfer information to the user, yet also provide the user with a level of satisfaction. As multimedia is ultimately produced for the education and / or enjoyment of viewers, the user’s-perspective concerning the presentation quality is surely of equal importance as objective Quality of Service (QoS) technical parameters, to defining distributed multimedia quality. In order to extensively measure the user-perspective of multimedia video quality, we introduce an extended model of distributed multimedia quality that segregates quality into three discrete levels: the network-level, the media-level and content-level, using two distinct quality perspectives: the user-perspective and the technical-perspective. Since experimental questionnaires do not provide continuous monitoring of user attention, eye tracking was used in our study in order to provide a better understanding of the role that the human element plays in the reception, analysis and synthesis of multimedia data. Results showed that video content adaptation, results in disparity in user video eye-paths when: i) no single / obvious point of focus exists; or ii) when the point of attention changes dramatically. Accordingly, appropriate technical- and user-perspective parameter adaptation is implemented, for all quality abstractions of our model, i.e. network-level (via simulated delay and jitter), media-level (via a technical- and user-perspective manipulated region-of-interest attentive display) and content-level (via display-type and video clip-type). Our work has shown that user perception of distributed multimedia quality cannot be achieved by means of purely technical-perspective QoS parameter adaptation.
Resumo:
One goal in the development of distributed virtual environments (DVEs) is to create a system such that users are unaware of the distribution-the distribution should be transparent. The paper begins by discussing the general issues in DVEs that might make this possible, and a system that allows some level of distribution transparency is described. The system described suffers from effects of inconsistency, which in turn cause undesirable visual effects. The causal surface is introduced as a solution that removes these visual effects. The paper then introduces two determining factors of distribution transparency relating to user perception and performance. With regard to these factors, two hypotheses are stated relating to the causal surface. A user-trial on forty-five subjects is used to validate the hypotheses. A discussion of the results of the trial concludes that the causal surface solution does significantly improve the distribution transparency in a DVE.
Resumo:
Research to date has tended to concentrate on bandwidth considerations to increase scalability in distributed interactive simulation and virtual reality systems. This paper proposes that the major concern for latency in user interaction is that of the fundamental limit of communication rate due to the speed of light. Causal volumes and surfaces are introduced as a model of the limitations of causality caused by this fundamental delay. The concept of virtual world critical speed is introduced, which can be determined from the causal surface. The implications of the critical speed are discussed, and relativistic dynamics are used to constrain the object speed, in the same way speeds are bounded in the real world.
Resumo:
The development of large scale virtual reality and simulation systems have been mostly driven by the DIS and HLA standards community. A number of issues are coming to light about the applicability of these standards, in their present state, to the support of general multi-user VR systems. This paper pinpoints four issues that must be readdressed before large scale virtual reality systems become accessible to a larger commercial and public domain: a reduction in the effects of network delays; scalable causal event delivery; update control; and scalable reliable communication. Each of these issues is tackled through a common theme of combining wall clock and causal time-related entity behaviour, knowledge of network delays and prediction of entity behaviour, that together overcome many of the effects of network delay.
Resumo:
The development of large scale virtual reality and simulation systems have been mostly driven by the DIS and HLA standards community. A number of issues are coming to light about the applicability of these standards, in their present state, to the support of general multi-user VR systems. This paper pinpoints four issues that must be readdressed before large scale virtual reality systems become accessible to a larger commercial and public domain: a reduction in the effects of network delays; scalable causal event delivery; update control; and scalable reliable communication. Each of these issues is tackled through a common theme of combining wall clock and causal time-related entity behaviour, knowledge of network delays and prediction of entity behaviour, that together overcome many of the effects of network delays.
Resumo:
User interaction within a virtual environment may take various forms: a teleconferencing application will require users to speak to each other (Geak, 1993), with computer supported co-operative working; an Engineer may wish to pass an object to another user for examination; in a battle field simulation (McDonough, 1992), users might exchange fire. In all cases it is necessary for the actions of one user to be presented to the others sufficiently quickly to allow realistic interaction. In this paper we take a fresh look at the approach of virtual reality operating systems by tackling the underlying issues of creating real-time multi-user environments.
Resumo:
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.