52 resultados para distal upper limb
Resumo:
The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the “In–Out” mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.
Resumo:
We use microwave retrievals of upper tropospheric humidity (UTH) to estimate the impact of clear-sky-only sampling by infrared instruments on the distribution, variability and trends in UTH. Our method isolates the impact of the clear-sky-only sampling, without convolving errors from other sources. On daily time scales IR-sampled UTH contains large data gaps in convectively active areas, with only about 20-30 % of the tropics (30 S 30 N) being sampled. This results in a dry bias of about -9 %RH in the area-weighted tropical daily UTH time series. On monthly scales, maximum clear-sky bias (CSB) is up to -30 %RH over convectively active areas. The magnitude of CSB shows significant correlations with UTH itself (-0.5) and also with the variability in UTH (-0.6). We also show that IR-sampled UTH time series have higher interannual variability and smaller trends compared to microwave sampling. We argue that a significant part of the smaller trend results from the contrasting influence of diurnal drift in the satellite measurements on the wet and dry regions of the tropics.
Resumo:
Voluminous rhyolitic eruptions from Toba, Indonesia, and Taupo Volcanic Zone (TVZ), New Zealand, have dispersed volcanic ash over vast areas in the late Quaternary. The ~74 ka Youngest Toba Tuff (YTT) eruption deposited ash over the Bay of Bengal and the Indian subcontinent to the west. The ~340 ka Whakamaru eruption (TVZ) deposited the widespread Rangitawa Tephra, dominantly to the southeast (in addition to occurrences northwest of vent), extending across the landmass of New Zealand, and the South Pacific Ocean and Tasman Sea, with distal terrestrial exposures on the Chatham Islands. These super-eruptions involved ~2500 km^3 and ~1500 km3 of magma (dense-rock equivalent; DRE), respectively. Ultra-distal terrestrial exposures of YTT at two localities in India, Middle Son Valley, Madhya Pradesh, and Jurreru River Valley, Andhra Pradesh, at distances of >2000 km from the source caldera, show a basal ‘primary’ ashfall unit ~4 cm thick, although deposits containing reworked ash are up to ~3 m in total thickness. Exposures of Rangitawa Tephra on the Chatham Islands, >900 km from the source caldera, are ~15-30 cm thick. At more proximal localities (~200 km from source), Rangitawa Tephra is ~55-70 cm thick and characterized by a crystal-rich basal layer and normal grading. Both distal tephra deposits are characterized by very-fine ash (with high PM10 fractions) and are crystal-poor. Glass chemistry, stratigraphy and grain-size data for these distal tephra deposits are presented with comparisons of their correlation, dispersal and preservation. Using field observations, ash transport and deposition were modeled for both eruptions using a semi-analytical model (HAZMAP), with assumptions concerning average wind direction and strength during eruption, column shape and vent size. Model outputs provide new insights into eruption dynamics and better estimates of eruption volumes associ- ated with tephra fallout. Modeling based on observed YTT distal tephra thicknesses indicate a relatively low (<40 km high), very turbulent eruption column, consistent with deposition from a co-ignimbrite cloud extending over a broad region. Similarly, the Whakamaru eruption was modeled as producing a predominantly Plinian column (~45 km high), with dispersal to the southeast by strong prevailing winds. Significant ash fallout of the main dispersal direction, to the northwest of source, cannot be replicated in this modeling. The widespread dispersal of large volumes of fine ash from both eruptions may have had global environmental consequences, acutely affecting areas up to thousands of kilometers from vent.
Resumo:
Global climate change results from a small yet persistent imbalance between the amount of sunlight absorbed by Earth and the thermal radiation emitted back to space. An apparent inconsistency has been diagnosed between interannual variations in the net radiation imbalance inferred from satellite measurements and upper-ocean heating rate from in situ measurements, and this inconsistency has been interpreted as ‘missing energy’ in the system. Here we present a revised analysis of net radiation at the top of the atmosphere from satellite data, and we estimate ocean heat content, based on three independent sources. We find that the difference between the heat balance at the top of the atmosphere and upper-ocean heat content change is not statistically significant when accounting for observational uncertainties in ocean measurements, given transitions in instrumentation and sampling. Furthermore, variability in Earth’s energy imbalance relating to El Niño-Southern Oscillation is found to be consistent within observational uncertainties among the satellite measurements, a reanalysis model simulation and one of the ocean heat content records. We combine satellite data with ocean measurements to depths of 1,800 m, and show that between January 2001 and December 2010, Earth has been steadily accumulating energy at a rate of 0.50±0.43 Wm−2 (uncertainties at the 90% confidence level). We conclude that energy storage is continuing to increase in the sub-surface ocean.
Resumo:
We present an analysis of the oceanic heat advection and its variability in the upper 500 m in the southeastern tropical Pacific (100W–75W, 25S–10S) as simulated by the global coupled model HiGEM, which has one of the highest resolutions currently used in long-term integrations. The simulated climatology represents a temperature advection field arising from transient small-scale (<450 km) features, with structures and transport that appear consistent with estimates based on available observational data for the mooring at 20S, 85W. The transient structures are very persistent (>4 months), and in specific locations they generate an important contribution to the local upper-ocean heat budget, characterised by scales of a few hundred kilometres, and periods of over a year. The contribution from such structures to the local, long-term oceanic heat budget however can be of either sign, or vanishing, depending on the location; and, although there appears some organisation in preferential areas of activity, the average over the entire region is small. While several different mechanisms may be responsible for the temperature advection by transients, we find that a significant, and possibly dominant, component is associated with vortices embedded in the large-scale, climatological salinity gradient associated with the fresh intrusion of mid-latitude intermediate water which penetrates north-westward beneath the tropical thermocline