70 resultados para digestion
Resumo:
Galactooligosaccharides (GOS) are well-known prebiotic ingredients which can form the basis of new functional dairy products. In this work, the production and characterization of glycated beta-lactoglobulin beta-LG) with prebiotic GOS through the Maillard reaction under controlled conditions (a(w) = 0.44, 40 degrees C for 23 days) have been studied. The extent of glycation of beta-LG was evaluated by formation of furosine which progressively increased with storage for up to 16 days, suggesting that the formation of Amadori compounds prevailed over their degradation. RP-HPLC-UV, SIDS-PAGE, and IEF profiles of beta-LG were modified as a consequence of its glycation. MALDI-ToF mass spectra of glycated beta-LG showed an increase of up to similar to 21% in its average molecular mass after storage for 23 days. Moreover, a decrease in unconjugated GOS (one tri-, two tetra-, and one pentasaccharide) was observed by HPAEC-PAD upon glycation. These results were confirmed by ESI MS. The stability of the glycated beta-LG to in vitro simulated gastrointestinal digestion was also described and compared with that of the unglycated protein. The yield of digestion products of glycated beta-LG was lower than that observed for the unglycated protein. The conjugation of prebiotic carbohydrates to stable proteins and peptides could open new routes of research in the study of functional ingredients.
Resumo:
Exopolysaccharides (EPS) isolated from two Bifidobacterium strains, one of human intestinal origin (Bifidobacterium longum subsp. longum IPLA E44) and the other from dairy origin (Bifidobacterium animalis subsp. lactis IPLA R1), were subjected to in vitro chemically simulated gastrointestinal digestion. which showed the absence of degradation of both polymers in these conditions. Polymers were then used as carbon sources in pH-controlled faecal batch cultures and compared with the non-prebiotic carbohydrate glucose and the prebiotic inulin to determine changes in the composition of faecal bacteria. A set of eight fluorescent in situ hybridisation oligonucleotide probes targeting 16S rRNA sequences was used to quantify specific groups of microorganisms. Growth of the opportunistic pathogen Clostridium histolyticum occurred with all carbohydrates tested similarly to that found in negative control cultures without added carbohydrate and was mainly attributed to the culture conditions used rather than enhancement of growth by these substrates. Polymers E44 and RI stimulated growth of Lactobacillus/Enterococcus, Bifidobacterium, and Bacteroides/Prevotella in a similar way to that seen with inulin. The EPS RI also promoted growth of the Atopobium cluster during the first 24 h of fermentation. An increase in acetic and lactic acids was found during early stages of fermentation (first 10-24 h) correlating with increases of Lactobacillus, Bifidobacterium, and Atopobium. Propionic acid concentrations increased in old cultures, which was coincident with the enrichment of Clostridium cluster IX in cultures with EPS RI and with the increases in Bacteroides in cultures with both microbial EPS (RI and E44) and inulin. The lowest acetic to propionic acid ratio was obtained for EPS E44. None of the carbohydrates tested supported the growth of microorganisms from Clostridium clusters XIVa+b and IV, results that correlate with the poor butyrate production in the presence of EPS. Thus, EPS synthesized by bifidobacteria from dairy and intestinal origins can modulate the intestinal microbiota in vitro, promoting changes in some numerically and metabolically relevant microbial populations and shifts in the production of short chain fatty acids. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Potent angiotensin l-converting enzyme (ACE) inhibitory peptide mixtures were obtained from the hydrolysis of beta-lactoglobulin (beta Lg) using Protease N Amano, a food-grade commercial proteolytic preparation. Hydrolysis experiments were carried out for 8 h at two different temperatures and neutral pH. Based on their ACE inhibitory activity, samples of 6 h of digestion were chosen for further analysis. The temperature used for the hydrolysis had a marked influence on the type of peptides produced and their concentration in the hydrolysate. Protease N Amano was found to produce very complex peptide mixtures; however, the partially fractionated hydrolysates had already very potent ACE inhibitory activity. The novel heptapeptide SAPLRVY was isolated and characterised. It corresponded to beta Lg f(36-42) and had an IC50 value of 8 mu m, which is considerably lower than the most potent ACE inhibitory peptides derived from bovine beta Lg reported so far. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Protein, generally agreed to be the most satiating macronutrient, may differ in its effects on appetite depending on the protein source and variation in digestion and absorption. We investigated the effects of two milk protein types, casein and whey, on food intake and subjective ratings of hunger and fullness, and on postprandial metabolite and gastrointestinal hormone responses. Two studies were undertaken. The first study showed that energy intake from a buffet meal ad libitum was significantly less 90 min after a 1700 kJ liquid preload containing 48 g whey, compared with an equivalent casein preload (P<0.05). In the second study, the same whey preload led to a 28 % increase in postprandial plasma amino acid concentrations over 3 h compared with casein (incremental area under the curve (iAUC), P<0.05). Plasma cholecystokinin (CCK) was increased by 60 % (iAUC, P<0.005), glucagon-like peptide (GLP)-1 by 65 % (iAUC, P<0.05) and glucose-dependent insulinotropic polypeptide by 36 % (iAUC, P<0.01) following the whey preload compared with the casein. Gastric emptying was influenced by protein type as evidenced by differing plasma paracetamol profiles with the two preloads. Greater subjective satiety followed the whey test meal (P<0.05). These results implicate post-absorptive increases in plasma amino acids together with both CCK and GLP-1 as potential mediators of the increased satiety response to whey and emphasise the importance of considering the impact of protein type on the appetite response to a mixed meal.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
Apolipoprotein E (apoE), an important determinant of plasma lipoprotein metabolism, has three common alleles (ε 2, ε 3, and ε 4). Population studies have shown that the risk of diseases characterized by oxidative damage, such as coronary heart disease and Alzheimer's disease, is significantly higher in ε 4 carriers. We evaluated the association between apoE genotypes and plasma F-2-isoprostane levels, an index of lipid peroxidation, in humans. Two hundred seventy-four healthy subjects (104 males, 170 females; 46.9 &PLUSMN; 13.0 yr; 200 whites, 74 blacks; 81 nonsmokers, 64 passive smokers, and 129 active smokers) recruited for a randomized clinical antioxidant intervention trial were included in this analysis. ApoE genotype was determined by PCR and restriction enzyme digestion. Free plasma F2-isoprostane was measured by GC-MS. Genotype groups were compared using multiple regression analysis with adjustment for sex, age, race, smoking status, body mass index, plasma ascorbic acid, and β-carotene. Subjects with ε 3/ε 4 and ε 4/ε 4 genotype (ε 4-carriers) and with ε 2/ε 3 and ε 3/ε 3 (non-ε 4-carriers) were pooled for analysis. In subjects with high cholesterol levels (total cholesterol above 200 mg/dl), plasma F-2-isoprostane levels were 29% higher in ε 4 carriers than in non-ε 4-carriers (P= 0.0056). High-cholesterol subjects that are ε 4 carriers have significantly higher levels of lipid peroxidation as assessed by circulating F-2-isoprostane levels.
Resumo:
Background The gut and immune system form a complex integrated structure that has evolved to provide effective digestion and defence against ingested toxins and pathogenic bacteria. However, great variation exists in what is considered normal healthy gut and immune function. Thus, whilst it is possible to measure many aspects of digestion and immunity, it is more difficult to interpret the benefits to individuals of variation within what is considered to be a normal range. Nevertheless, it is important to set standards for optimal function for use both by the consumer, industry and those concerned with the public health. The digestive tract is most frequently the object of functional and health claims and a large market already exists for gut-functional foods worldwide. Aim To define normal function of the gut and immune system and describe available methods of measuring it. Results We have defined normal bowel habit and transit time, identified their role as risk factors for disease and how they may be measured. Similarly, we have tried to define what is a healthy gut flora in terms of the dominant genera and their metabolism and listed the many, varied and novel methods for determining these parameters. It has proved less easy to provide boundaries for what constitutes optimal or improved gastric emptying, gut motility, nutrient and water absorption and the function of organs such as the liver, gallbladder and pancreas. The many tests of these functions are described. We have discussed gastrointestinal well being. Sensations arising from the gut can be both pleasant and unpleasant. However, the characteristics of well being are ill defined and merge imperceptibly from acceptable to unacceptable, a state that is subjective. Nevertheless, we feel this is an important area for future work and method development. The immune system is even more difficult to make quantitative judgements about. When it is defective, then clinical problems ensure, but this is an uncommon state. The innate and adaptive immune systems work synergistically together and comprise many cellular and humoral factors. The adaptive system is extremely sophisticated and between the two arms of immunity there is great redundancy, which provides robust defences. New aspects of immune function are discovered regularly. It is not clear whether immune function can be "improved". Measuring aspects of immune function is possible but there is no one test that will define either the status or functional capacity of the immune system. Human studies are often limited by the ability to sample only blood or secretions such as saliva but it should be remembered that only 2% of lymphocytes circulate at any given time, which limits interpretation of data. We recommend assessing the functional capacity of the immune system by: measuring specific cell functions ex vivo, measuring in vivo responses to challenge, e. g. change in antibody in blood or response to antigens, determining the incidence and severity of infection in target populations during naturally occurring episodes or in response to attenuated pathogens.
Resumo:
There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.
Resumo:
Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.
Resumo:
It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.
Resumo:
Background: Compared with the postprandial events after a single meal, different events occur when a second meal is ingested 4–6 h after a first meal. There is a rapid appearance of chylomicrons in the circulation carrying fat ingested with the first meal, with a peak 1 h after the second meal. Objective: Our goal was to examine whether different dietary oils have effects on the storage of triacylglycerol as a result of differences in their digestion, absorption, and incorporation into chylomicrons. Design: A single-blind, randomized, within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester, and triacylglycerol in the Sf > 400 fraction with the use of a sequential meal protocol. Results: For triacylglycerol, retinyl ester, and apo B-48, the time to reach peak concentration was significantly earlier after the second meal than after the first meal (P < 0.005). This was apparent with each of the dietary oils. The pattern of the apo B-48 response differed significantly among the dietary oils, with olive oil resulting in higher concentrations after both meals (P = 0.003). The ratio of triacylglycerol to apo B-48 was significantly lower after olive oil feeding than after feeding with the other oils (P = 0.02). Conclusions: The rapid entry of chylomicrons after the ingestion of a second meal 5 h after a first meal was seen with all of the oils investigated. The short-term ingestion of olive oil produced more chylomicrons than did the other dietary oils, which may have been due to differences in the metabolic handling of olive oil within the gut.
Resumo:
Scope: Cocoa, especially the water-insoluble cocoa fraction (WICF), is a rich source of polyphenols. In this study, sequential in vitro digestion of the WICF with gastrointestinal enzymes as well as its bacterial fermentation in a human colonic model system were carried out to investigate bioaccessibility and biotransformation of WICF polyphenols, respectively. Methods and results: The yield of each enzymatic digestion step and the total antioxidant capacity (TAC) were measured and solubilized phenols were characterized by MS/MS. Fermentation of WICF and the effect on the gut microbiota, SCFA production and metabolism of polyphenols was analyzed. In vitro digestion solubilized 38.6% of WICF with pronase and Viscozyme L treatments releasing 51% of the total phenols from the insoluble material. This release of phenols does not determine a reduction in the total antioxidant capacity of the digestion-resistant material. In the colonic model WICF significantly increased of bifidobacteria and lactobacilli as well as butyrate production. Flavanols were converted into phenolic acids by the microbiota following a concentration gradient resulting in high concentrations of 3-hydroxyphenylpropionic acid (3-HPP) in the last gut compartment. Conclusion: Data showed that WICF may exert antioxidant action through the gastrointestinal tract despite its polyphenols being still bound to macromolecules and having prebiotic activity.
Resumo:
The Acari is the most numerous and diverse group of the subphylum Chelicerata. With approximately 55 000 described species (and estimates of up to 1 million extant species), their adaptations for parasitism, phytophagy, mycophagy, saprophagy and predation rival other arthropods and challenge us with a wide variety of biological interactions. While a few studies have unravelled the nature of some endosymbiotic associations between mites or ticks and prokaryotes, almost nothing has been done yet regarding acarine eukaryotic ectosymbionts. Microbial ectosymbionts can benefit their hosts by providing nutrients, by aiding digestion, by enhancing communication, by assisting in mating and/or fertilization, by protecting their host against pathogenic microorganisms, against predation and so on. In this sketch, we introduce a number of described cases of fungal and protist ectosymbionts and discuss the role they might play in the life of their acarine hosts.