52 resultados para depth of reasoning


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study analyses soil organic carbon (SOC) and hot-water extractable carbon (HWC), both measures of soil quality, under different land management: (1) conventional tillage (CT); (2) CT plus the addition of oil mill waste alperujo (A); (3) CT plus the addition of oil mill waste olive leaves (L); (4) no tillage with chipped pruned branches (NT1); and (5) no tillage with chipped pruned branches and weeds (NT2); in a typical Mediterranean agricultural area; the olive groves of Andalucía, southern Spain. SOC values in CT, A, NT1 and NT2 decreased with depth, but in NT2 the surface horizon (0-5 cm) had higher values than the other treatments, 47% more than the average values in the other three soils. In L, SOC also decreased with depth, although there was an increase of 88.5% from the first (0-10 cm) to the second horizon (10-16 cm). Total SOC stock values were very similar under A (101.9 Mg ha−1), CT (101.7 Mg ha−1), NT1 (105.8 Mg ha−1) and NT2 (111.3 Mg ha−1, if we consider the same depth of the others). However, SOC under L was significantly higher (p < 0.05) at 250.2 Mg ha−1. HWC decreased with depth in A, CT and NT1. NT2 and L followed the same pattern as the other management types but with a higher value in the surface horizon (2.3 and 4.9 mg g−1 respectively). Overall, our results indicate that application of oil mill waste olive leaves under CT (L) is a good management practice to improve SOC and reduce waste.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The long duration of the 2010 Eyjafjallajökull eruption provided a unique opportunity to measure a widely dispersed volcanic ash cloud. Layers of volcanic ash were observed by the European Aerosol Research Lidar Network with a mean depth of 1.2 km and standard deviation of 0.9 km. In this paper we evaluate the ability of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) to simulate the observed ash layers and examine the processes controlling their depth. NAME simulates distal ash layer depths exceptionally well with a mean depth of 1.2 km and standard deviation of 0.7 km. The dominant process determining the depth of ash layers over Europe is the balance between the vertical wind shear (which acts to reduce the depth of the ash layers) and vertical turbulent mixing (which acts to deepen the layers). Interestingly, differential sedimentation of ash particles and the volcano vertical emission profile play relatively minor roles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cold sector of a midlatitude storm is characterized by distinctive features such as strong surface heat fluxes, shallow convection, convective precipitation and synoptic subsidence. In order to evaluate the contribution of processes occurring in the cold sector to the mean climate, an appropriate indicator is needed. This study describes the systematic presence of negative potential vorticity (PV) behind the cold front of extratropical storms in winter. The origin of this negative PV is analyzed using ERA-Interim data, and PV tendencies averaged over the depth of the boundary layer are evaluated. It is found that negative PV is generated by diabatic processes in the cold sector and by Ekman pumping at the low centre, whereas positive PV is generated by Ekman advection of potential temperature in the warm sector. We suggest here that negative PV at low levels can be used to identify the cold sector. A PV-based indicator is applied to estimate the respective contributions of the cold sector and the remainder of the storm to upward motion and large-scale and convective precipitation. We compare the PV-based indicator with other distinctive features that could be used as markers of the cold sector and find that potential vorticity is the best criterion when taken alone and the best when combined with any other.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sea ice export from the Arctic is of global importance due to its fresh water which influences the oceanic stratification and, thus, the global thermohaline circulation. This study deals with the effect of cyclones on sea ice and sea ice transport in particular on the basis of observations from two field experiments FRAMZY 1999 and FRAMZY 2002 in April 1999 and March 2002 as well as on the basis of simulations with a numerical sea ice model. The simulations realised by a dynamic-thermodynamic sea ice model are forced with 6-hourly atmospheric ECMWF- analyses (European Centre for Medium-Range Weather Forecasts) and 6-hourly oceanic data of a MPI-OM-simulation (Max-Planck-Institute Ocean Model). Comparing the observed and simulated variability of the sea ice drift and of the position of the ice edge shows that the chosen configuration of the model is appropriate for the performed studies. The seven observed cyclones change the position of the ice edge up to 100 km and cause an extensive decrease of sea ice coverage by 2 % up to more than 10 %. The decrease is only simulated by the model if the ocean current is strongly divergent in the centre of the cyclone. The impact is remarkable of the ocean current on divergence and shear deformation of the ice drift. As shown by sensitivity studies the ocean current at a depth of 6 m – the sea ice model is forced with – is mainly responsible for the ascertained differences between simulation and observation. The simulated sea ice transport shows a strong variability on a time scale from hours to days. Local minima occur in the time series of the ice transport during periods with Fram Strait cyclones. These minima are not caused by the local effect of the cyclone’s wind field, but mainly by the large-scale pattern of surface pressure. A displacement of the areas of strongest cyclone activity in the Nordic Seas would considerably influence the ice transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective/Background: Traditionally, sclerotherapy has been thought to work by the cytotoxic effect of the sclerosant upon the endothelium alone. However, studies have shown that sclerotherapy is more successful in smaller veins than in larger veins. This could be explained by the penetration of the sclerosant, or its effect, into the media. This study aimed to investigate intimal and medial damage profiles after sclerosant treatment. Methods: Fresh human varicose veins were treated ex vivo with either 1% or 3% sodium tetradecyl sulphate (STS) for 1 or 10 minutes. The effect of the sclerosant on the vein wall was investigated by immunofluorescent labelling of transverse vein sections using markers for endothelium (CD31), smooth muscle (a-actin), apoptosis (p53) and inflammation (intercellular adhesion molecule-1 [ICAM-1]). Polidocanol (POL; 3%) treatment at 10 minutes was similarly investigated. Results: Endothelial cell death was concentration- and time-dependent for STS but incomplete for both sclerosants. Time, but not concentration, significantly affected cell death (p > .001). A 40% and 30% maximum reduction was observed for STS and POL, respectively. Destruction of 20e30% of smooth muscle cells was found up to 250 mm from the lumen after 3% STS treatment for 10 minutes. POL treatment for 10 minutes showed inferior destruction of medial cells. Following STS treatment and 24-hour tissue culture, p53 and ICAM-1 were upregulated to a depth of around 300 mm. This effect was not observed with POL. Conclusion: Inflammatory and apoptotic markers show the same distribution as medial cell death, implying that sclerotherapy with STS works by inducing apoptosis in the vein wall rather than having an effect restricted to the endothelium. Incomplete loss of endothelial cells and penetration of the sclerosant effect up to 250 mm into the media suggest that medial damage is crucial to the success of sclerotherapy and may explain why it is less effective in larger veins.