88 resultados para computer-based


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BCI systems require correct classification of signals interpreted from the brain for useful operation. To this end this paper investigates a method proposed in [1] to correctly classify a series of images presented to a group of subjects in [2]. We show that it is possible to use the proposed methods to correctly recognise the original stimuli presented to a subject from analysis of their EEG. Additionally we use a verification set to show that the trained classification method can be applied to a different set of data. We go on to investigate the issue of invariance in EEG signals. That is, the brain representation of similar stimuli is recognisable across different subjects. Finally we consider the usefulness of the methods investigated towards an improved BCI system and discuss how it could potentially lead to great improvements in the ease of use for the end user by offering an alternative, more intuitive control based mode of operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes the implementation of an offline, low-cost Brain Computer Interface (BCI) alternative to more expensive commercial models. Using inexpensive general purpose clinical EEG acquisition hardware (Truscan32, Deymed Diagnostic) as the base unit, a synchronisation module was constructed to allow the EEG hardware to be operated precisely in time to allow for recording of automatically time stamped EEG signals. The synchronising module allows the EEG recordings to be aligned in stimulus time locked fashion for further processing by the classifier to establish the class of the stimulus, sample by sample. This allows for the acquisition of signals from the subject’s brain for the goal oriented BCI application based on the oddball paradigm. An appropriate graphical user interface (GUI) was constructed and implemented as the method to elicit the required responses (in this case Event Related Potentials or ERPs) from the subject.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Different types of mental activity are utilised as an input in Brain-Computer Interface (BCI) systems. One such activity type is based on Event-Related Potentials (ERPs). The characteristics of ERPs are not visible in single-trials, thus averaging over a number of trials is necessary before the signals become usable. An improvement in ERP-based BCI operation and system usability could be obtained if the use of single-trial ERP data was possible. The method of Independent Component Analysis (ICA) can be utilised to separate single-trial recordings of ERP data into components that correspond to ERP characteristics, background electroencephalogram (EEG) activity and other components with non- cerebral origin. Choice of specific components and their use to reconstruct “denoised” single-trial data could improve the signal quality, thus allowing the successful use of single-trial data without the need for averaging. This paper assesses single-trial ERP signals reconstructed using a selection of estimated components from the application of ICA on the raw ERP data. Signal improvement is measured using Contrast-To-Noise measures. It was found that such analysis improves the signal quality in all single-trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a prototype grid infrastructure, called the eMinerals minigrid, for molecular simulation scientists. which is based on an integration of shared compute and data resources. We describe the key components, namely the use of Condor pools, Linux/Unix clusters with PBS and IBM's LoadLeveller job handling tools, the use of Globus for security handling, the use of Condor-G tools for wrapping globus job submit commands, Condor's DAGman tool for handling workflow, the Storage Resource Broker for handling data, and the CCLRC dataportal and associated tools for both archiving data with metadata and making data available to other workers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the superposition-based cooperative transmission system. In this system, a key point is for the relay node to detect data transmitted from the source node. This issued was less considered in the existing literature as the channel is usually assumed to be flat fading and a priori known. In practice, however, the channel is not only a priori unknown but subject to frequency selective fading. Channel estimation is thus necessary. Of particular interest is the channel estimation at the relay node which imposes extra requirement for the system resources. The authors propose a novel turbo least-square channel estimator by exploring the superposition structure of the transmission data. The proposed channel estimator not only requires no pilot symbols but also has significantly better performance than the classic approach. The soft-in-soft-out minimum mean square error (MMSE) equaliser is also re-derived to match the superimposed data structure. Finally computer simulation results are shown to verify the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our eyes are input sensors which Provide our brains with streams of visual data. They have evolved to be extremely efficient, and they will constantly dart to-and-fro to rapidly build up a picture of the salient entities in a viewed scene. These actions are almost subconscious. However, they can provide telling signs of how the brain is decoding the visuals and call indicate emotional responses, prior to the viewer becoming aware of them. In this paper we discuss a method of tracking a user's eye movements, and Use these to calculate their gaze within an immersive virtual environment. We investigate how these gaze patterns can be captured and used to identify viewed virtual objects, and discuss how this can be used as a, natural method of interacting with the Virtual Environment. We describe a flexible tool that has been developed to achieve this, and detail initial validating applications that prove the concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for block base motion compensation. On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduced hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms, Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is typically on advanced operations such as structure solution or Rietveld refinement. This article describes a lightweight software package, Jpowder, whose focus is fast and convenient visualization and comparison of powder data sets in a variety of formats from computers with network access. Jpowder is written in Java and uses its associated Web Start technology to allow ‘single-click deployment’ from a web page, http://www.jpowder.org. Jpowder is open source, free and available for use by anyone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide A beta 16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and Molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations, The Solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics Simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one being linear and twisted and the other twisted in two directions. These structures Were used to simulate Circular dichroism spectra. The roles of aromatic stacking interactions and charge transfer effects were also examined. Simulated spectra were found to be similar to those observed experimentally.(in water or methanol) which show a maximum at 215 or 218 nm due to pi-pi* interactions, when allowance is made for a 15-18 nm red-shift that may be due to light scattering effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is motivated towards handling single node failures for parallel summation algorithms in computer clusters. An agent based approach is proposed in which a task to be executed is decomposed to sub-tasks and mapped onto agents that traverse computing nodes. The agents intercommunicate across computing nodes to share information during the event of a predicted node failure. Two single node failure scenarios are considered. The Message Passing Interface is employed for implementing the proposed approach. Quantitative results obtained from experiments reveal that the agent based approach can handle failures more efficiently than traditional failure handling approaches.