64 resultados para computational neuroscience
Resumo:
Some points of the paper by N.K. Nichols (see ibid., vol.AC-31, p.643-5, 1986), concerning the robust pole assignment of linear multiinput systems, are clarified. It is stressed that the minimization of the condition number of the closed-loop eigenvector matrix does not necessarily lead to robustness of the pole assignment. It is shown why the computational method, which Nichols claims is robust, is in fact numerically unstable with respect to the determination of the gain matrix. In replying, Nichols presents arguments to support the choice of the conditioning of the closed-loop poles as a measure of robustness and to show that the methods of J Kautsky, N. K. Nichols and P. VanDooren (1985) are stable in the sense that they produce accurate solutions to well-conditioned problems.
Resumo:
A number of computationally reliable direct methods for pole assignment by feedback have recently been developed. These direct procedures do not necessarily produce robust solutions to the problem, however, in the sense that the assigned poles are insensitive to perturbalions in the closed-loop system. This difficulty is illustrated here with results from a recent algorithm presented in this TRANSACTIONS and its causes are examined. A measure of robustness is described, and techniques for testing and improving robustness are indicated.
Resumo:
Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.
Resumo:
The arbitrarily structured C-grid, TRiSK (Thuburn, Ringler, Skamarock and Klemp, 2009, 2010) is being used in the ``Model for Prediction Across Scales'' (MPAS) and is being considered by the UK Met Office for their next dynamical core. However the hexagonal C-grid supports a branch of spurious Rossby modes which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilised transport (CLUST), a blend between centred and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed which gives further discrimination between schemes than using potential enstrophy alone and indeed some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude-longitude grids of the sphere for various shallow water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result TRiSK appears to perform better than a spectral shallow water model.
Resumo:
The dinuclear complex [{Ru(CN)4}2(μ-bppz)]4− shows a strongly solvent-dependent metal–metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH2Cl2. In CH2Cl2 the separation between the successive Ru(II)/Ru(III) redox couples is 350 mVand the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mVand the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH2Cl2 or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH2Cl2 and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCTexcited state, which is formulated as RuIII(bppz˙−)RuII and can therefore be considered as a mixed-valence Ru(II)/Ru(III) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(II) and Ru(III) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙− which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(II)/Ru(II), Ru(II)/Ru(III) and Ru(III)/Ru(III) calculations in both water and CH2Cl2 well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)4(μ-bppz)]2– and [{Ru(CN)4}2(μ-bppz)]4− very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH2Cl2.
Resumo:
In this paper, we will address the endeavors of three disciplines, Psychology, Neuroscience, and Artificial Neural Network (ANN) modeling, in explaining how the mind perceives and attends information. More precisely, we will shed some light on the efforts to understand the allocation of attentional resources to the processing of emotional stimuli. This review aims at informing the three disciplines about converging points of their research and to provide a starting point for discussion.
Resumo:
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on dis- tributed networks. For example,more recent work has established the capacity of transcranialmagnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neu- rostimulationwith theoretical and biologicalmodels of cognition, for example,when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informedcomputational network analyses for predicting the impactofneurostimulationonbrainnetworks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools withwhich to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition
Resumo:
Brain activity can be measured non-invasively with functional imaging techniques. Each pixel in such an image represents a neural mass of about 105 to 107 neurons. Mean field models (MFMs) approximate their activity by averaging out neural variability while retaining salient underlying features, like neurotransmitter kinetics. However, MFMs incorporating the regional variability, realistic geometry and connectivity of cortex have so far appeared intractable. This lack of biological realism has led to a focus on gross temporal features of the EEG. We address these impediments and showcase a "proof of principle" forward prediction of co-registered EEG/fMRI for a full-size human cortex in a realistic head model with anatomical connectivity, see figure 1. MFMs usually assume homogeneous neural masses, isotropic long-range connectivity and simplistic signal expression to allow rapid computation with partial differential equations. But these approximations are insufficient in particular for the high spatial resolution obtained with fMRI, since different cortical areas vary in their architectonic and dynamical properties, have complex connectivity, and can contribute non-trivially to the measured signal. Our code instead supports the local variation of model parameters and freely chosen connectivity for many thousand triangulation nodes spanning a cortical surface extracted from structural MRI. This allows the introduction of realistic anatomical and physiological parameters for cortical areas and their connectivity, including both intra- and inter-area connections. Proper cortical folding and conduction through a realistic head model is then added to obtain accurate signal expression for a comparison to experimental data. To showcase the synergy of these computational developments, we predict simultaneously EEG and fMRI BOLD responses by adding an established model for neurovascular coupling and convolving "Balloon-Windkessel" hemodynamics. We also incorporate regional connectivity extracted from the CoCoMac database [1]. Importantly, these extensions can be easily adapted according to future insights and data. Furthermore, while our own simulation is based on one specific MFM [2], the computational framework is general and can be applied to models favored by the user. Finally, we provide a brief outlook on improving the integration of multi-modal imaging data through iterative fits of a single underlying MFM in this realistic simulation framework.
Resumo:
This commentary situates the second person account within a broader framework of ecological validity for experimental paradigms in social cognitive neuroscience. It then considers how individual differences at psychological and genetic levels can be integrated within the proposed framework.
Resumo:
p-(Dimethylamino)phenyl pentazole, DMAP-N5 (DMAP = Me2N−C6H4), was characterized by picosecond transient infrared spectroscopy and infrared spectroelectrochemistry. Femtosecond laser excitation at 310 or 330 nm produces the DMAP-N5 (S1) excited state, part of which returns to the ground state (τ = 82 ± 4 ps), while DMAP-N and DMAP-N3 (S0) are generated as double and single N2-loss photoproducts with η ≈ 0.14. The lifetime of DMAP-N5 (S1) is temperature and solvent dependent. [DMAP-N3]+ is produced from DMAP-N5 in a quasireversible, one-electron oxidation process (E1/2 = +0.67 V). Control experiments with DMAP-N3 support the findings. DFT B3LYP/6-311G** calculations were used to identify DMAP-N5 (S1), DMAP-N3 +, and DMAP-N in the infrared spectra. Both DMAP-N5 (S1) and [DMAP-N5]+ have a weakened N5 ring structure.
Resumo:
The electronic properties of four divinylanthracene-bridged diruthenium carbonyl complexes [{RuCl(CO)(PMe3)3}2(μ[BOND]CH[DOUBLE BOND]CHArCH[DOUBLE BOND]CH)] (Ar=9,10-anthracene (1), 1,5-anthracene (2), 2,6-anthracene (3), 1,8-anthracene (4)) obtained by molecular spectroscopic methods (IR, UV/Vis/near-IR, and EPR spectroscopy) and DFT calculations are reported. IR spectroelectrochemical studies have revealed that these complexes are first oxidized at the noninnocent bridging ligand, which is in line with the very small ν(C[TRIPLE BOND]O) wavenumber shift that accompanies this process and also supported by DFT calculations. Because of poor conjugation in complex 1, except oxidized 1+, the electronic absorption spectra of complexes 2+, 3+, and 4+ all display the characteristic near-IR band envelopes that have been deconvoluted into three Gaussian sub-bands. Two of the sub-bands belong mainly to metal-to-ligand charge-transfer (MLCT) transitions according to results from time-dependent DFT calculations. EPR spectroscopy of chemically generated 1+–4+ proves largely ligand-centered spin density, again in accordance with IR spectra and DFT calculations results.
Resumo:
In recent years, computational fluid dynamics (CFD) has been widely used as a method of simulating airflow and addressing indoor environment problems. The complexity of airflows within the indoor environment would make experimental investigation difficult to undertake and also imposes significant challenges on turbulence modelling for flow prediction. This research examines through CFD visualization how air is distributed within a room. Measurements of air temperature and air velocity have been performed at a number of points in an environmental test chamber with a human occupant. To complement the experimental results, CFD simulations were carried out and the results enabled detailed analysis and visualization of spatial distribution of airflow patterns and the effect of different parameters to be predicted. The results demonstrate the complexity of modelling human exhalation within a ventilated enclosure and shed some light into how to achieve more realistic predictions of the airflow within an occupied enclosure.
Resumo:
LRRK2 was identified in 2004 as the causative protein product of the Parkinson’s disease locus designated PARK8. In the decade since then, genetic studies have revealed at least 6 dominant mutations in LRRK2 linked to Parkinson’s disease, alongside one associated with cancer. It is now well established that coding changes in LRRK2 are one of the most common causes of Parkinson’s. Genome-wide association studies (GWAs) have, more recently, reported single nucleotide polymorphisms (SNPs) around the LRRK2 locus to be associated with risk of developing sporadic Parkinson’s disease and inflammatory bowel disorder. The functional research that has followed these genetic breakthroughs has generated an extensive literature regarding LRRK2 pathophysiology; however, there is still no consensus as to the biological function of LRRK2. To provide insight into the aspects of cell biology that are consistently related to LRRK2 activity, we analysed the plethora of candidate LRRK2 interactors available through the BioGRID and IntAct data repositories. We then performed GO terms enrichment for the LRRK2 interactome. We found that, in two different enrichment portals, the LRRK2 interactome was associated with terms referring to transport, cellular organization, vesicles and the cytoskeleton. We also verified that 21 of the LRRK2 interactors are genetically linked to risk for Parkin- son’s disease or inflammatory bowel disorder. The implications of these findings are discussed, with particular regard to potential novel areas of investigation.