52 resultados para compound stimuli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, biosensors have been defined as consisting of two parts; a biological part, which is used to detect chemical or physical changes in the environment, and a corresponding electronic component, which tranduces the signal into an electronically readable format. Biosensors are used for detection of volatile compounds often at a level of sensitivity unattainable by traditional analytical techniques. Classical biosensors and traditional analytical techniques do not allow an ecological context to be imparted to the volatile compound/s under investigation. Therefore, we propose the use of behavioral biosensors, in which a whole organism is utilized for the analysis of chemical stimuli. In this case, the organism detects a chemical or physical change and demonstrates this detection through modifications of its behavior; it is the organism's behavior itself that defines the biosensor. In this review, we evaluate the use and future prospects of behavioral biosensors, with a particular focus on parasitic wasps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imitation is an important form of social behavior, and research has aimed to discover and explain the neural and kinematic aspects of imitation. However, much of this research has featured single participants imitating in response to pre-recorded video stimuli. This is in spite of findings that show reduced neural activation to video vs. real life movement stimuli, particularly in the motor cortex. We investigated the degree to which video stimuli may affect the imitation process using a novel motion tracking paradigm with high spatial and temporal resolution. We recorded 14 positions on the hands, arms, and heads of two individuals in an imitation experiment. One individual freely moved within given parameters (moving balls across a series of pegs) and a second participant imitated. This task was performed with either simple (one ball) or complex (three balls) movement difficulty, and either face-to-face or via a live video projection. After an exploratory analysis, three dependent variables were chosen for examination: 3D grip position, joint angles in the arm, and grip aperture. A cross-correlation and multivariate analysis revealed that object-directed imitation task accuracy (as represented by grip position) was reduced in video compared to face-to-face feedback, and in complex compared to simple difficulty. This was most prevalent in the left-right and forward-back motions, relevant to the imitator sitting face-to-face with the actor or with a live projected video of the same actor. The results suggest that for tasks which require object-directed imitation, video stimuli may not be an ecologically valid way to present task materials. However, no similar effects were found in the joint angle and grip aperture variables, suggesting that there are limits to the influence of video stimuli on imitation. The implications of these results are discussed with regards to previous findings, and with suggestions for future experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arousing stimuli, either threat-related or pleasant, may be selected for priority at different stages within the processing stream. Here we examine the pattern of processing for non-task-relevant threatening (spiders: arousing to some) and pleasant stimuli (babies or chocolate: arousing to all) by recording the gaze of a spider Fearful and Non-fearful group while they performed a simple “follow the cross” task. There was no difference in first saccade latencies. Saccade trajectories showed a general hypervigilance for all stimuli in the Fearful group. Saccade landing positions corresponded to what each group would find arousing, such that the Fearful group deviated towards both types of images whereas the Non-fearful group deviated towards pleasant images. Secondary corrective saccade latencies away from threat-related stimuli were longer for the Fearful group (difficulty in disengaging) compared with the Non-fearful group. These results suggest that attentional biases towards arousing stimuli may occur at different processing stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that the colored dummy face pattern had a significant advantage in terms of classification accuracy (p < 0.05) and information transfer rate (p < 0.05) compared to the other two patterns. Conclusions: The stimuli used in the colored dummy face paradigm combined color and facial expressions. This had a significant advantage in terms of the evoked P300 and N400 amplitudes and resulted in high classification accuracies and information transfer rates. It was compared with colored ball and gray dummy face stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on a study investigating the relative influence of the first and dominant language on L2 and L3 morpho-lexical processing. A lexical decision task compared the responses to English NV-er compounds (e.g., taxi driver) and non-compounds provided by a group of native speakers and three groups of learners at various levels of English proficiency: L1 Spanish-L2 English sequential bilinguals and two groups of early Spanish-Basque bilinguals with English as their L3. Crucially, the two trilingual groups differed in their first and dominant language (i.e., L1 Spanish-L2 Basque vs. L1 Basque-L2 Spanish). Our materials exploit an (a)symmetry between these languages: while Basque and English pattern together in the basic structure of (productive) NV-er compounds, Spanish presents a construction that differs in directionality as well as inflection of the verbal element (V[3SG] + N). Results show between and within group differences in accuracy and response times that may be ascribable to two factors besides proficiency: the number of languages spoken by a given participant and their dominant language. An examination of response bias reveals an influence of the participants' first and dominant language on the processing of NV-er compounds. Our data suggest that morphological information in the nonnative lexicon may extend beyond morphemic structure and that, similarly to bilingualism, there are costs to sequential multilingualism in lexical retrieval.