54 resultados para component analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sainfoin is a non-bloating temperate forage legume with a moderate-to-high condensed tannin (CT) content. This study investigated whether the diversity of sainfoin accessions in terms of CT structures and contents could be related to rumen in vitro gas and methane (CH4) production and fermentation characteristics. The aim was to identify promising accessions for future investigations. Accessions differed (P < 0·0001) in terms of total gas and CH4 productions. Fermentation kinetics (i.e. parameters describing the shape of the gas production curve and half-time gas production) for CH4 production were influenced by accession (P ≤ 0·038), but not by PEG. Accession, PEG and time affected (P < 0·001) CH4 production, but accession and PEG interaction showed only a tendency (P = 0·08). Increase in CH4 due to PEG addition was not related to CT content. Further analysis of the relationships among multiple traits (nutritional composition, CT structure and CH4 production) using principal component analysis (PCA) based on optimally weighted variables revealed differences among accessions. The first two principal component axes, PC1 (57·6%) and PC2 (18·4%), explained 76·0% of the total variation among accessions. Loading of biplots derived from both PCAs made it possible to establish a relationship between the ratio of prodelphinidin:procyanidin (PD:PC) tannins and CH4 production in some accessions. The PD:PC ratio seems to be an important source of variation that is negatively related to CH4 production. These results suggested that sainfoin accessions collected from across the world exhibited substantial variation in terms of their effects on rumen in vitro CH4 production, revealing some promising accessions for future investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrophilic interaction chromatography–mass spectrometry (HILIC–MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial–host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC–MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance (1H NMR) spectroscopy. Using CE–MS and 1H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC–MS and CE–MS. Overall, HILIC–MS appears to be highly complementary to CE–MS and 1H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional brain imaging studies have shown abnormal neural activity in individuals recovered from anorexia nervosa (AN) during both cognitive and emotional task paradigms. It has been suggested that this abnormal activity which persists into recovery might underpin the neurobiology of the disorder and constitute a neural biomarker for AN. However, no study to date has assessed functional changes in neural networks in the absence of task-induced activity in those recovered from AN. Therefore, the aim of this study was to investigate whole brain resting state functional connectivity in nonmedicated women recovered from anorexia nervosa. Functional magnetic resonance imaging scans were obtained from 16 nonmedicated participants recovered from anorexia nervosa and 15 healthy control participants. Independent component analysis revealed functionally relevant resting state networks. Dual regression analysis revealed increased temporal correlation (coherence) in the default mode network (DMN) which is thought to be involved in self-referential processing. Specifically, compared to healthy control participants the recovered anorexia nervosa participants showed increased temporal coherence between the DMN and the precuneus and the dorsolateral prefrontal cortex/inferior frontal gyrus. The findings support the view that dysfunction in resting state functional connectivity in regions involved in self-referential processing and cognitive control might be a vulnerability marker for the development of anorexia nervosa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Animal models are invaluable tools which allow us to investigate the microbiome-host dialogue. However, experimental design introduces biases in the data that we collect, also potentially leading to biased conclusions. With obesity at pandemic levels animal models of this disease have been developed; we investigated the role of experimental design on one such rodent model. We used 454 pyrosequencing to profile the faecal bacteria of obese (n = 6) and lean (homozygous n = 6; heterozygous n = 6) Zucker rats over a 10 week period, maintained in mixed-genotype cages, to further understand the relationships between the composition of the intestinal bacteria and age, obesity progression, genetic background and cage environment. Phylogenetic and taxon-based univariate and multivariate analyses (non-metric multidimensional scaling, principal component analysis) showed that age was the most significant source of variation in the composition of the faecal microbiota. Second to this, cage environment was found to clearly impact the composition of the faecal microbiota, with samples from animals from within the same cage showing high community structure concordance, but large differences seen between cages. Importantly, the genetically induced obese phenotype was not found to impact the faecal bacterial profiles. These findings demonstrate that the age and local environmental cage variables were driving the composition of the faecal bacteria and were more deterministically important than the host genotype. These findings have major implications for understanding the significance of functional metagenomic data in experimental studies and beg the question; what is being measured in animal experiments in which different strains are housed separately, nature or nurture?

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vine-growing in the Less-Favoured Areas of Greece is facing multiple challenges that might lead to its abandonment. In an attempt to maintain rural populations, Rural Development Schemes have been created that offer the opportunity to rural households to maintain or expand their farming businesses including vine-growing. This paper stems from a study that used data from a cross-sectional survey of 204 farmers to investigate how farming systems and farmers’ perception of corruption, amongst other socio-economic factors, affected their decisions to continue vine-growing through participation in Rural Development Schemes, in three remote Less-Favoured Areas of Greece. The Theory of Planned Behaviour was used to frame the research problem with the assumption being that an individual’s intention to participate in a Scheme is based on their prior beliefs about it. Data from the survey were reduced and simplified by the use of non-linear principal component analysis. The ensuing variables were used in selectivity corrected ordered probit models to reveal farmers’ attitudes towards viticulture and rural development. It was found that economic factors, perceived corruption and farmers’ attitudes were significant determinants on whether to participate in the Schemes. The research findings highlight the important role of perceived corruption and the need for policies that facilitate farmers’ access to decision making centres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R2 = 0.66) and Bacteroides (R2 = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fully automated and online artifact removal method for the electroencephalogram (EEG) is developed for use in brain-computer interfacing. The method (FORCe) is based upon a novel combination of wavelet decomposition, independent component analysis, and thresholding. FORCe is able to operate on a small channel set during online EEG acquisition and does not require additional signals (e.g. electrooculogram signals). Evaluation of FORCe is performed offline on EEG recorded from 13 BCI particpants with cerebral palsy (CP) and online with three healthy participants. The method outperforms the state-of the-art automated artifact removal methods Lagged auto-mutual information clustering (LAMIC) and Fully automated statistical thresholding (FASTER), and is able to remove a wide range of artifact types including blink, electromyogram (EMG), and electrooculogram (EOG) artifacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to specify a set of attributes, identified as important precursors to coach selection. Executive coaching has grown exponentially, but there have been few studies as to the efficacy of coaching, including the factors that influence a manager's choice of coach. This study sought to identify these factors. The 45-item, online survey produced 267 useable responses. Results of the principal component analysis suggested a five-factor solution, with women showing a statistically significant preference over men for coaches who have the Ability to Develop Critical Thinking and Action, the Ability to Forge the Coaching Partnership and Coach Experience and Qualifications. The impact of coachee age was not significant in selecting executive coaches. The findings show a statistically significant relationship between coach attributes and the intention to continue with coaching. The implications of these findings for the selection of coaches, and for the coaching profession are discussed.