67 resultados para complexity metrics
Resumo:
Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.
Resumo:
It is widely assumed that the British are poorer modern foreign language (MFL) learners than their fellow Europeans. Motivation has often been seen as the main cause of this perceived disparity in language learning success. However, there have also been suggestions that curricular and pedagogical factors may play a part. This article reports a research project investigating how German and English 14- to 16-year-old learners of French as a first foreign language compare to one another in their vocabulary knowledge and in the lexical diversity, accuracy and syntactic complexity of their writing. Students from comparable schools in Germany and England were set two writing tasks which were marked by three French native speakers using standardised criteria aligned to the Common European Framework of Reference (CEF). Receptive vocabulary size and lexical diversity were established by the X_lex test and a verb types measure respectively. Syntactic complexity and formal accuracy were respectively assessed using the mean length of T-units (MLTU) and words/error metrics. Students' and teachers' questionnaires and semi-structured interviews were used to provide information and participants' views on classroom practices, while typical textbooks and feedback samples were analysed to establish differences in materials-related input and feedback in the two countries. The German groups were found to be superior in vocabulary size, and in the accuracy, lexical diversity and overall quality – but not the syntactic complexity – of their writing. The differences in performance outcomes are analysed and discussed with regard to variables related to the educational contexts (e.g. curriculum design and methodology).
Resumo:
Greater self-complexity has been suggested as a protective factor for people under stress (Linville, 1985). Two different measures have been proposed to assess individual self-complexity: Attneave’s H statistic (1959) and a composite index of two components of self-complexity (SC; Rafaeli-Mor et al., 1999). Using mood-incongruent recall, i.e., recalling positive events while in negative mood, the present study compared validity of the two measures through reanalysis of Sakaki’s (2004) data. Results indicated that H statistic did not predict performance of mood-incongruent recall. In contrast, greater SC was associated with better mood-incongruent recall even when the effect of H statistic was controlled.
Resumo:
Annual company reports rarely distinguish between domestic and export market performance and even more rarely provide information about annual indicators of a specific export venture's performance. In this study, the authors develop and test a new measure for assessing the annual performance of an export venture (the APEV scale). The new measure comprises five dimensions: (1) annual export venture financial performance, (2) annual export venture strategic performance, (3) annual export venture achievement, (4) contribution of the export venture to annual exporting operations, and (5) satisfaction with annual export venture overall performance. The authors use the APEV scale to generate a scorecard of performance in exporting (the PERFEX scorecard) to assess export performance at the corporate level while comparatively evaluating all export ventures of the firm. Both the scale and the scorecard could help disclose export venture performance and could be useful instruments for annual planning, management, monitoring, and improvement of exporting programs.
Resumo:
The synthesis and characterization of five new indium selenides, [C9H17N2]3[In5Se8+x(Se2)1−x] (1–2), [C6H12N2]4[C6H14N2]3[In10Se15(Se2)3] (3), [C6H14N2][(C6H12N2)2NaIn5Se9] (4) and [enH2][NH4][In7Se12] (5), are described. These materials were prepared under solvothermal conditions, using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as structure-directing agents. Compounds 1–4 represent the first examples of ribbons in indium selenides, and 4 is the first example of incorporation of an alkali metal complex. Compounds 1, 2 and 4 contain closely related [In5Se8+x(Se2)1−x]3− ribbons which differ only in their content of (Se2)2− anions. These ribbons are interspaced by organic countercations in 1 and 2, while in 4 they are linked by highly unusual [Na(DABCO)2]+ units into a three-dimensional framework. Compound 3 contains complex ribbons, with a long repeating sequence of ca. 36 Å, and 4 is a non-centrosymmetric three-dimensional framework, formed as a consequence of the decomposition of DABCO into ethylenediamine (en) and ammonia.
Resumo:
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
Resumo:
The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.
Resumo:
To mitigate the inter-carrier interference (ICI) of doubly-selective (DS) fading channels, we consider a hybrid carrier modulation (HCM) system employing the discrete partial fast Fourier transform (DPFFT) demodulation and the banded minimum mean square error (MMSE) equalization in this letter. We first provide the discrete form of partial FFT demodulation, then apply the banded MMSE equalization to suppress the residual interference at the receiver. The proposed algorithm has been demonstrated, via numerical simulations, to be its superior over the single carrier modulation (SCM) system and circularly prefixed orthogonal frequency division multiplexing (OFDM) system over a typical DS channel. Moreover, it represents a good trade-off between computational complexity and performance.
Resumo:
Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.
Resumo:
Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPP_P) and sustained (GPP_S) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPP_P and GPP_S formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPP_P and GPP_S varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPP_S at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPP_P and GPP_S for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a references gas, the GPP_P and GPP_S for the non-CO2 species are larger than the corresponding GTP values. For BC emissions, the atmospheric forcing is sufficiently strong that the GPP_S is opposite in sign to the GTP_S. The sensitivity of these values to a number of input parameters is explored. The GPP can also be used to evaluate the contribution of different emissions to precipitation change during or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008 (using the GPP_P) and emissions sustained at 2008 levels (using the GPP_S) are presented. These indicate that for periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum of the effect of the five species included here does not become positive until after 50 years, by which time the global surface temperature increase exceeds 1 K.
Resumo:
The ‘Public interest’, even if viewed with ambiguity or scepticism, has been one of the primary means by which various professional roles of planners have been justified. Many objections to the concept have been advanced by writers in planning academia. Notwithstanding these, ‘public interest’ continues to be mobilised, to justify, defend or argue for planning interventions and reforms. This has led to arguments that planning will have to adopt and recognise some form of public interest in practice to legitimise itself.. This paper explores current debates around public interest and social justice and advances a vision of the public interest informed by complexity theory. The empirical context of the paper is the poverty alleviation programme, the Kudumbashree project in Kerala, India.