152 resultados para cis-polyisoprene
Resumo:
Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and ArnphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis-duplication events of genes early in animal evolution. A trans-duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two Multifunctional photoactive complexes [Re(Cl)(CO)(3)-(MeDpe(+))(2)](2+) and [Re(MeDpe(+))(CO)(3)(bpy)](2+) (MeDpe(+) = N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy = 2,2'-bipyridine) were synthesized. characterized. and their redox and photonic properties were investigated by cyclic voltammetry: ultraviolet-visible-infrared (UV/Vis/IR) spectroelectrochemistry, stationary UV/Vis and resonance Raman spectroscopy; photolysis; picosecond time-resolved absorption spectroscopy in the visible and infrared regions: and time-resolved resonance Raman spectroscopy. The first reduction step of either complex Occurs at about -1.1 V versus Fc/Fc(+) and is localized at MeDpe(+). Reduction alone does not induce a trans -> cis isomerization of MeDpe(+). [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) is photostable, while [Re(MeDpe(+))(CO)(3)(bpy)](2+) and free MeDpe(+) isomerize under near-UV irradiation. The lowest excited state of [Re(Cl)(CO)(3)(MeDPe(+))(2)](2+) has been identified as the Re(Cl)(CO)(3) -> MeDpe(+) (MLCT)-M-3 (MLCT = metal-to-ligand charge transfer), decaying directly to the ground state with lifetimes of approximate to 42 (73%) and approximate to 430ps (27%). Optical excitation of [Re(MeDpe(+))(CO)(3)(bpy)](2+) leads to population of Re(CO)(3) -> MeDpe(+) and Re(CO)(3) -> bpy (MLCT)-M-3 states, from which a MeDpe(+) localized intraligand 3 pi pi* excited state ((IL)-I-3) is populated with lifetimes of approximate to 0.6 and approximate to 10 ps, respectively. The 3IL state undergoes a approximate to 21 ps internal rotation, which eventually produces the cis isomer on a much longer timescale. The different excited-state behavior of the two complexes and the absence of thermodynamically favorable interligand electron transfer in excited [Re(MeDpe(+))(CO)(3)(bpy)](2+) reflect the fine energetic balance between excited states of different orbital origin, which can be tuned by subtle Structural variations. The complex [Re(MeDpe+)(CO)(3)(bpy)](2+) emerges as a prototypical, multifunctional species with complementary redox and photonic behavior.
Resumo:
A new layered ammonium manganese(II) diphosphate, (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)], has been synthesised under solvothermal conditions at 433 K in ethylene glycol and the structure determined at 293 K using single-crystal X-ray diffraction data (M-r = 584.82, monoclinic, space group P2(1)/a, a = 9.4610( 8), b = 8.3565( 7), c = 9.477(1) Angstrom, beta = 99.908(9) degrees, V = 738.07 Angstrom(3), Z = 2, R = 0.0351 and R-w = 0.0411 for 1262 observed data (I > 3(sigma(I))). The structure consists of chains of cis- and trans-edge sharing MnO6 octahedra linked via P2O7 units to form layers of formula [Mn3P4O14(H2O)(2)](2-) in the ab plane. Ammonium ions lie between the manganese-diphosphate layers. A network of interlayer and ammonium-layer based hydrogen bonding holds the structure together. Magnetic measurements indicate Curie - Weiss behaviour above 30 K with mu(eff) = 5.74(1) mu(B) and theta = -23(1) K, consistent with the presence of high-spin Mn2+ ions and antiferromagnetic interactions. However, the magnetic data reveal a spontaneous magnetisation at 5 K, indicating a canting of Mn2+ moments in the antiferromagnetic ground state. On heating (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)] in water at 433 K under hydrothermal conditions, Mn-5(HPO4)(2)(PO4)(2).4H(2)O, synthetic hureaulite, is formed.
Resumo:
Oxorhenium(V) complexes of beta-diketonate systems have been synthesized and isolated in pure form. The red complexes n-Bu4N[ReO(R1COCHCOR2)Cl-3] (acac, R-1=R-2=CH3; bzac, R-1=CH3 and R-2=C6H5; bzbz, R-1=R-2=C6H5) have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. One complex, n-Bu4N[ReO(bzbz)Cl-3] (1c) has been subjected to single-crystal X-ray analysis. In the structure of the anion, the metal has a six-coordinate octahedral environment in which the bidentate -diketone ligand is cis and trans to the terminal oxygen.
Resumo:
A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine-adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554-1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis-syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.
Resumo:
A family of ruthenium (III) complexes of tetradentate monobasic NSNO donor chelators (HL) have been synthesized and isolated in their pure form. On chromatographic separation, trans-dichloro and cis-dichloro ruthenium (111) complexes of pyridylthioazophenolates are eluted using 19:1 and 7:3 (v/v) DCM-MeOH mixtures, respectively. Both cis and trans isomers of the dark brown colored ruthenium (111) complexes, having the general formula of [Ru(L)Cl-2], have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. The magnetic moments of both the cis- and trans-[Ru(L)Cl-2] complexes are in the range of 1.71-1.79 BM. One of the complexes, trans-[Ru(L1)Cl-2] (2a), has been subjected to single-crystal X-ray analysis which confirms that the chlorines are in mutually trans positions in the molecule. The EPR spectra of the cis-[Ru(L)Cl-2] complexes (1) in DMF are consistent with the fact that the complexes are low-spin octahedral with one unpaired electron having three different g values (g(x) not equal g(y) not equal g(z)) complexes are monomeric with an octahedral coordination sphere. The electrochemical studies of [Ru(L)Cl,] in DMF show a quasi-reversible voltammogram. The reduction potentials for the cis-isomers are comparatively lower than those of the corresponding trans isomers. On reaction with the bidentate bipyridyl ligand in the presence of AgNO3, the cis-[Ru(L)Cl-2] complexes (1) produce a series of complexes with the general formula [Ru(L)(bpy)(2)](PF6)(2) (3). which have also been characterized by elemental analyses, spectroscopic and other physico-chemical tools. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
From the reaction of cis-Ru(1,10-phenanthroline)(2)Cl(2 center dot)2H(2)O with 2-picolinic acid in 1:1 molar ratio in degassed methanol-water mixture, [Ru(1,10-phenanthroline)(2)(2-picolinate)]PF6 center dot H2O (1) has been isolated as a red compound by adding excess of NH4PF6. Single crystal X-ray crystallography shows that the metal in 1 has an octahedral N5O coordination sphere. Complex 1 displays (MLCT)-M-1 bands in the 400-500 nm region in acetonitrile. Upon excitation at 435 nm, complex 1 gives rise to a broad emission band at 675 nm in acetonitrile at room temperature with a quantum yield of 0.0022. The energy of the MLCT state in 1 is estimated as 1.99 eV. Since, from cyclic voltammetry, the ground state potential of the Ru(II/III) couple in 1 is found to be 1.01 V vs NHE, the potential of the same couple in the excited state is calculated as -0.98 V vs NHE. The emissive state in 1 seems to be the triplet Ru(II) -> 1, 10-phenanthroline charge transfer state.
Resumo:
Reaction of cis-Ru(bisox)(2)Cl-2, where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with HNO3 in 1 : 4 molar proportion in boiling water under N-2 atmosphere and subsequent addition of an excess of NaClO4 center dot H2O yields [Ru(bisox)(HL)(NO)](ClO4)(NO3) (1). HL is a hydrolysed form of bisox where one of the oxazoline rings opens up. X-Ray crystallography shows that 1 contains an octahedral RuN5O core. HL binds the metal through an imino N, an amide N and an alcoholic O atom. Reaction of cis-Ru(bisox)(2)Cl-2 with an excess of NaNO2 in water gives cis-Ru(bisox)(2)(NO2)(2) (2). On acidification by HClO4 in methanol, 2 is smoothly converted to cis-[Ru(bisox)(2)(NO2)(NO)](ClO4)(2) (3) due to equilibrium (1).
Resumo:
Reaction of cis-Ru(bisox)(2)Cl-2, where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with excess of pyridine-2-carboxaldehyde (py-2-al) in 1:1 (v/v) methanol-water mixture under nitrogen atmosphere and subsequent addition of excess of NH4PF6 give [Ru(bisox)(2)(py-2-al)](PF6)(2)center dot H2O (1). Refluxing of 1 in dehydrated methanol in presence of triethylamine yields the corresponding hemiacetalate complex: [Ru(bisox)(2) (pyridine-2-(alpha-methoxymethanolato))] PF6 center dot 1.5H(2)O (2). Both the complexes have been characterised by single crystal X-ray crystallography, FTIR and NMR. In cyclic voltammetry in acetonitrile at a glassy carbon electrode, 2 displays a quasireversible Ru(II/III) couple at 1.08 V versus NHE which is not observed in 1. A tentative mechanism is proposed for the conversion of 1 to 2. DFT calculations with the LanL2DZ basis set have been performed to investigate these observations theoretically. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
Electrochemical and spectroelectrochemical techniques were employed to study in detail the formation and so far unreported spectroscopic properties of soluble electroactive molecular chains with nonbridged metal-metal backbones, namely, [{Ru-0(CO)(PrCN)(bpy)}(m)](n) (m = 0, -1) and [{Ru-0(CO)(bpy)Cl}(m)](n) (m = -1, -2; bpy = 2,2'-bipyridine). The precursors cis-(Cl)-[Ru-II(CO)(MeCN)(bpy)Cl-2] (in PrCN) and mer-[Ru-II(CO)(bpy)Cl-3](-) (in tetrahydrofuran (THF) and PrCN) undergo one-electron reductions to reactive radicals [Ru-II(CO)(MeCN)(bpy(center dot-))Cl-2](-) and [Ru-II(CO)(bpy(center dot-))Cl-3](2-), respectively. Both [bpy(center dot-)]-containing species readily electropolymerize on concomitant dissociation of two chloride ligands and consumption of a second electron. Along this path, mer-to-fac isomerization of the bpy-reduced trichlorido complex (supported by density functional theory calculations) and a concentration-dependent oligomerization process contribute to the complex reactivity pattern. In situ spectroelectrochemistry (IR, UV/vis a has revealed that the charged polymer [{Ru-0(CO)(bpy)Cl}(-)](n) is stable in THF, but in PrCN it converts readily to [Ru-0(CO)(PrCN)(bpy)](n). An excess of chloride ions retards this substitution at low temperatures. Both polymetallic chains are completely soluble in the electrolyte solution and can be reduced reversibly to the corresponding [bpy(center dot-)]-containing species.
Resumo:
A ring-contractive and highly diastereoselective [2,3]-sigmatropic rearrangement occurs when N-methyl-1,2,3,6-tetrahydropyridine is treated with sub-stoichiometric amounts of copper or rhodium salts, in the presence of ethyl diazoacetate, giving ethyl cis-N-methyl-3-ethenyl proline (4).
Resumo:
The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.