182 resultados para change models
Resumo:
Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.
A model-based assessment of the effects of projected climate change on the water resources of Jordan
Resumo:
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.
Resumo:
Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.
Resumo:
Crop production is inherently sensitive to variability in climate. Temperature is a major determinant of the rate of plant development and, under climate change, warmer temperatures that shorten development stages of determinate crops will most probably reduce the yield of a given variety. Earlier crop flowering and maturity have been observed and documented in recent decades, and these are often associated with warmer (spring) temperatures. However, farm management practices have also changed and the attribution of observed changes in phenology to climate change per se is difficult. Increases in atmospheric [CO2] often advance the time of flowering by a few days, but measurements in FACE (free air CO2 enrichment) field-based experiments suggest that elevated [CO2] has little or no effect on the rate of development other than small advances in development associated with a warmer canopy temperature. The rate of development (inverse of the duration from sowing to flowering) is largely determined by responses to temperature and photoperiod, and the effects of temperature and of photoperiod at optimum and suboptimum temperatures can be quantified and predicted. However, responses to temperature, and more particularly photoperiod, at supraoptimal temperature are not well understood. Analysis of a comprehensive data set of time to tassel initiation in maize (Zea mays) with a wide range of photoperiods above and below the optimum suggests that photoperiod modulates the negative effects of temperature above the optimum. A simulation analysis of the effects of prescribed increases in temperature (0-6 degrees C in + 1 degrees C steps) and temperature variability (0% and + 50%) on days to tassel initiation showed that tassel initiation occurs later, and variability was increased, as the temperature exceeds the optimum in models both with and without photoperiod sensitivity. However, the inclusion of photoperiod sensitivity above the optimum temperature resulted in a higher apparent optimum temperature and less variability in the time of tassel initiation. Given the importance of changes in plant development for crop yield under climate change, the effects of photoperiod and temperature on development rates above the optimum temperature clearly merit further research, and some of the knowledge gaps are identified herein.
Resumo:
Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.
Resumo:
Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.
Resumo:
With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.
Resumo:
Considerable attention has been given to the impact of climate change on avian populations over the last decade. In this paper we examine two issues with respect to coastal bird populations in the UK: (1) is there any evidence that current populations are declining due to climate change, and (2) how might we predict the response of populations in the future? We review the cause of population decline in two species associated with saltmarsh habitats. The abundance of Common Redshank Tringa totanus breeding on saltmarsh declined by about 23% between the mid-1980s and mid-1990s, but the decline appears to have been caused by an increase in grazing pressure. The number of Twite Carduelis flavirostris wintering on the coast of East Anglia has declined dramatically over recent decades; there is evidence linking this decline with habitat loss but a causal role for climate change is unclear. These examples illustrate that climate change could be having population-level impacts now, but also show that it is dangerous to become too narrowly focused on single issues affecting coastal birds. Making predictions about how populations might respond to future climate change depends on an adequate understanding of important ecological processes at an appropriate spatial scale. We illustrate this with recent work conducted on the Icelandic population of Black-tailed Godwits Limosa limosa islandica that shows large-scale regulatory processes. Most predictive models to date have focused on local populations (single estuary or a group of neighbouring estuaries). We discuss the role such models might play in risk assessment, and the need for them to be linked to larger-scale ecological processes. We argue that future work needs to focus on spatial scale issues and on linking physical models of coastal environments with important ecological processes.
Resumo:
We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.
Resumo:
Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.
Resumo:
Three simple climate models (SCMs) are calibrated using simulations from atmosphere ocean general circulation models (AOGCMs). In addition to using two conventional SCMs, results from a third simpler model developed specifically for this study are obtained. An easy to implement and comprehensive iterative procedure is applied that optimises the SCM emulation of global-mean surface temperature and total ocean heat content, and, if available in the SCM, of surface temperature over land, over the ocean and in both hemispheres, and of the global-mean ocean temperature profile. The method gives best-fit estimates as well as uncertainty intervals for the different SCM parameters. For the calibration, AOGCM simulations with two different types of forcing scenarios are used: pulse forcing simulations performed with 2 AOGCMs and gradually changing forcing simulations from 15 AOGCMs obtained within the framework of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The method is found to work well. For all possible combinations of SCMs and AOGCMs the emulation of AOGCM results could be improved. The obtained SCM parameters depend both on the AOGCM data and the type of forcing scenario. SCMs with a poor representation of the atmosphere thermal inertia are better able to emulate AOGCM results from gradually changing forcing than from pulse forcing simulations. Correct simultaneous emulation of both atmospheric temperatures and the ocean temperature profile by the SCMs strongly depends on the representation of the temperature gradient between the atmosphere and the mixed layer. Introducing climate sensitivities that are dependent on the forcing mechanism in the SCMs allows the emulation of AOGCM responses to carbon dioxide and solar insolation forcings equally well. Also, some SCM parameters are found to be very insensitive to the fitting, and the reduction of their uncertainty through the fitting procedure is only marginal, while other parameters change considerably. The very simple SCM is found to reproduce the AOGCM results as well as the other two comparably more sophisticated SCMs.
Resumo:
Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.
Resumo:
The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables. We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district. Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations. This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements. All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution.
Resumo:
We summarise the work of an interdisciplinary network set up to explore the impacts of climate change in the British Uplands. In this CR Special, the contributors present the state of knowledge and this introduction synthesises this knowledge and derives implications for decision makers. The Uplands are valued semi-natural habitats, providing ecosystem services that have historically been taken for granted. For example, peat soils, which are mostly found in the Uplands, contain around 50% of the terrestrial carbon in the UK. Land management continues to be a driver of ecosystem service delivery. Degraded and managed peatlands are subject to erosion and carbon loss with negative impacts on biodiversity, carbon storage and water quality. Climate change is already being experienced in British Uplands and is likely to exacerbate these pressures. Climate envelope models suggest as much as 50% of British Uplands and peatlands will be exposed to climate stress by the end of the 21st century under low and high emissions scenarios. However, process-based models of the response of organic soils to this climate stress do not give a consistent indication of what this will mean for soil carbon: results range from a very slight increase in uptake, through a clear decline, to a net carbon loss. Preserving existing peat stocks is an important climate mitigation strategy, even if new peat stops forming. Preserving upland vegetation cover is a key win–win management strategy that will reduce erosion and loss of soil carbon, and protect a variety of services such as the continued delivery of a high quality water resource.