61 resultados para caffeic ester
Resumo:
Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.
Resumo:
Background: Dietary isoflavones are thought to be cardioprotective because of their structural similarity to estrogen. The reduction of concentrations of circulating inflammatory markers by estrogen may be one of the mechanisms by which premenopausal women are protected against cardiovascular disease. Objective: Our aim was to investigate the effects of isolated soy isoflavones on inflammatory biomarkers [von Willebrand factor, intracellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin, monocyte chemoattractant protein 1, C-reactive protein (CRP), and endothelin 1 concentrations]. Differences with respect to single-nucleotide polymorphisms in selected genes [estrogen receptor alpha (XbaI and PvuII), estrogen receptor beta [ER beta (AluI) and ER beta[cx] (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), and cholesteryl ester transfer protein (TaqIB)] and equol production were investigated. Design: One hundred seventeen healthy European postmenopausal women participated in this randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2:1;50 mg/d) or placebo cereal bars were consumed for 8 wk, with a washout period of 8 wk between the crossover. Plasma inflammatory factors were measured at 0 and 8 wk of each study arm. Results: Isoflavones improved CRP concentrations [odds ratio (95% Cl) for CRP values >1 mg/L for isoflavone compared with placebo: 0.43 (0.27, 0.69)]; no significant effects of isoflavone treatment on other plasma inflammatory markers were observed. No significant differences in the response to isoflavones were observed according to subgroups of equol production. Differences in the VCAM-1 response to isoflavones and to placebo were found with ER beta AluI genotypes. Conclusion: Isoflavones have beneficial effects on CRP concentrations, but not on other inflammatory biomarkers of cardiovascular disease risk in postmenopausal women, and may improve VCAM-1 in an ER beta gene polymorphic subgroup.
Resumo:
This study investigated the incorporation of cis-9,trans-11 conjugated linoleic acid (c9,t11 CLA) and trans-10,cis-12-CLA (t10,c12 CLA) into plasma and peripheral blood mononuclear cell (PBMC) lipids when consumed as supplements highly enriched in these isomers. Healthy men (n = 49, age 31 +/- 8 years) consumed one, two, and four capsules containing similar to600 mg of either c9,t11 CIA or t10,c12 CLA per capsule for sequential 8 week periods followed by a 6 week washout before consuming the alternative isomer. Both isomers were incorporated in a dosedependent manner into plasma phosphatidylcholine (PC) (c9,t11 CLA r = 0.779, t10,c12 CLA r = 0.738; P < 0.0001) and cholesteryl ester (CE) (c9,t11 CLA r = 0.706, t10,c12 CLA r = 0.788; P < 0.0001). Only t10,c12 CLA was enriched in plasma nonesterified fatty acids. Both c9,t11 CIA and t10,c12 CLA were incorporated linearly into PBMC total lipids (r = 0.285 and r = 0.273, respectively; P < 0.0005). The highest concentrations of c9,t11 CLA and t10,c12 CLA in PBMC lipids were 3- to 4-fold lower than those in plasma PC and CE. These data suggest that the level of intake is a major determinant of plasma and PBMC CLA content, although PBMCs appear to incorporate both CLA isomers less readily.
Resumo:
Sunflower oil-in-water emulsions containing TBHQ, caffeic acid, epigallocatechin gallate (EGCG), or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), both with and without BSA, were stored at 50 and 30degreesC. Oxidation of the oil was monitored by determination of the PV, conjugated diene content, and hexanal formation. Emulsions containing EGCG, caffeic acid, and, to a lesser extent, Trolox were much more stable during storage in the presence of BSA than in its absence even though BSA itself did not provide an antioxidant effect. BSA did not have a synergistic effect on the antioxidant activity of TBHQ. The BSA structure changed, with a considerable loss of fluorescent tryptophan groups during storage of solutions containing BSA and antioxidants, and a BSA-antioxidant adduct with radical-scavenging activity was formed. The highest radical-scavenging activity observed was for the isolated protein from a sample containing EGCG and BSA incubated at 30degreesC for 10 d. This fraction contained unchanged BSA as well as BSA-antioxidant adduct, but 95.7% of the initial fluorescence had been lost, showing that most of the BSA had been altered. It can be concluded that BSA exerts its synergistic effect with antioxidants because of formation of a protein-antioxidant adduct during storage, which is concentrated at the oil-water interface owing to the surface-active nature of the protein.
Resumo:
Psoralens are well-known photosensitizers, and 8- methoxypsoralen and 4,5',8-trimethylpsoralen are widely used in photomedicine as "psoralens plus UVA therapy" (PUVA), in photopheresis, and in sterilization of blood preparations. In an attempt to improve the therapeutic efficiency of PUVA therapy and photopheresis, four poly(ethylene glycol) (PEG)-psoralen conjugates were synthesized to promote tumor targeting by the enhanced permeability and retention (EPR) effect. Peptide linkers were used to exploit specific enzymatic cleavage by lysosomal proteases. A new psoralen, 4-hydroxymethyl-4', 8-dimethylpsoralen (6), suitable for polymer conjugation was synthesized. The hydroxy group allowed exploring different strategies for PEG conjugation, and linkages with different stability such ester or urethanes were obtained. PEG (5 kDa) was covalently conjugated to the new psoralen derivative using four different linkages, namely, (i) direct ester bond (7), (ii) ester linkage with a peptide spacer (8), (iii) a carbamic linker (9), and (iv) a carbamic linker with a peptide spacer (12). The stability of these new conjugates was assessed at different pHs, in plasma and following incubation with cathepsin B. Conjugates 7 and 8 were rapidly hydrolyzed in plasma, while 9 was stable in buffer and in the presence of cathepsin B. As expected, only the conjugates containing the peptide linker released the drug in presence of cathepsin B. In vitro evaluation of the cytotoxic activity in the presence and absence of light was carried out in two cell lines (MCF-7 and A375 cells). Conjugates 7 and 8 displayed a similar activity to the free drug (probably due to the low stability of the ester linkage). Interestingly, the conjugates containing the carbamate linkage (9 and 12) were completely inactive in the dark (IC50 > 100 mu M in both cell lines). However, antiproliferative activity become apparent after UV irradiation. Conjugate 12 appears to be the most promising for future in vivo evaluation, since it was relatively stable in plasma, which should allow tumor targeting and drug release to occur by cathepsin B-mediated hydrolysis.
Resumo:
Protein kinase C (PKC) plays a pivotal role in modulating the growth of melanocytic cells in culture. We have shown previously that a major physiological substrate of PKC, the 80 kDa myristoylated alanine-rich C-kinase substrate (MARCKS), can be phosphorylated in quiescent, non-tumorigenic melanocytes exposed transiently to a biologically active phorbol ester, but cannot be phosphorylated in phorbol ester-treated, syngeneic malignant melanoma cells. Despite its ubiquitous distribution, the function of MARCKS in cell growth and transformation remains to be demonstrated clearly. We report here that MARCKS mRNA and protein levels are down-regulated significantly in the spontaneously derived murine B16 melanoma cell line compared with syngeneic normal Mel-ab melanocytes. In contrast, the tumourigenic v-Ha-ras-transfonned melan-ocytic line, LTR Ras 2, showed a high basal level of MARCKS phosphorylation which was not enhanced by treatment of cells with phorbol ester. Furthermore, protein levels of MARCKS in LTR Ras 2 cells were similar to those expressed in Mel-ab melanocytes. However, in four out of six murine tumour cell lines investigated, levels of MARCKS protein were barely detectable. Transfection of B16 cells with a plasmid containing the MARCKS cDNA in the sense orientation produced two neomycin-resistant clones displaying reduced proliferative capacity and decreased anchorage-independent growth compared with control cells. In contrast, transfection with the antisense MARCKS construct produced many colonies which displayed enhanced growth and transforming potential compared with control cells. Thus, MARCKS appears to act as a novel growth suppressor in the spontaneous transformation of cells of melanocyte origin and may play a more general role in the tumour progression of other carcinomas.
Resumo:
Protein kinase C (PKC) down-regulation has been shown to correlate with the growth of murine melanocytic cells in culture (Brooks, G., Wilson, R. E., Dooley, T. P., Goss, M. W., and Hart, I. R. (1991) Cancer Res. 51, 3281-3288). We now show that PKC alpha, delta, epsilon, and zeta isoforms are present at the protein level in quiescent, non-transformed Mel-ab melanocytes, maintained in the absence of phorbol ester. Proliferation of Mel-ab cells, achieved by incubation in the continual presence of phorbol 12,13-dibutyrate, was associated with a down-regulation of the PKC alpha, delta, and epsilon isozymes. Examination of two transformed syngeneic lines (the B16 murine melanoma and the long terminal repeat Ras.2 line), that grew in the absence of exogenous phorbol esters, showed that PKC alpha protein levels were either partially down-regulated or unaffected, the PKC delta and epsilon isoforms were down-regulated completely, and the levels of PKC zeta protein remained unaltered relative to quiescent Mel-ab cells. Basal levels of total diacylglycerol were elevated 5-fold in B16 melanoma cells compared with levels found in quiescent or proliferating Mel-ab melanocytes and appear to arise largely from the breakdown of phosphatidylinositol phospholipids accompanied by a significant rise in phospholipase C activity. Hourly treatments of quiescent Mel-ab melanocytes with the synthetic diacylglycerol analogue, 1,2-dioctanoyl-sn-glycerol, for 24 h, resulted in an induction of DNA synthesis which was associated with a significant down-regulation of PKC levels mediated largely via post-translational rather than transcriptional mechanisms. These results show for the first time that specific isoforms of PKC are down-regulated at the protein level during proliferation of murine melanocytic cells and suggest that the constitutive down-regulation of PKC in transformed melanoma cells may arise as a consequence of elevated endogenous phosphatidylinositol-derived diacylglycerol levels.
Resumo:
The nontumorigenic, immortal line of murine melanocytes, Mel-ab, requires the continual presence of biologically active phorbol esters for growth (R. E. Wilson et al., Cancer Res., 49: 711–716, 1989). Comparable treatments of B16 murine melanoma cells result in partial inhibition of cell proliferation. The role of protein kinase C (PKC) in the modulation of growth of cells from these two melanocytic cell lines has been investigated. Significant levels of PKC were present in quiescent Mel-ab cells as determined by Western blotting, whereas no immunoreactive protein was detected in cell extracts from either proliferating Mel-ab or B16.F1 cells. Phosphorylation of a Mr 80,000 protein, which by one- and two-dimensional gel analysis comigrated with the known Mr 80,000 protein substrate of PKC in fibroblasts, was induced in 12-O-tetradecanoylphorbol-13-acetate-stimulated quiescent Mel-ab cells but not in proliferating Mel-ab cells or B16.F1 melanoma cells. Direct measurement of PKC activity in these cells demonstrated a 10-fold greater level of activity in quiescent Mel-ab cells (262 ± 50 pmol/min/mg SD) compared with growing cells (22.8 ± 11.8 pmol/min/mg SD). An intermediate level of activity was detected in proliferating B16.F1 melanoma cells (148.5 ± 20.4 pmol/min/mg SD). The subcellular distribution of PKC was dependent upon the growth state of the cells such that quiescent Mel-ab cells displayed a higher level of activity in the cytosol, whereas growing Melab cells displayed greater activity in the particulate fraction. Like many other transformed lines, B16.F1 melanoma cells constitutively expressed the majority of enzyme activity in the particulate fraction. Measurement of [3H]phorbol ester binding in intact cells paralleled the PKC activation data such that quiescent Mel-ab cells displayed binding of 1612 ± 147 cpm/106 cells, whereas proliferating Mel-ab and B16.F1 melanoma cells displayed binding of 652 ± 28 and 947 ± 81 cpm/106 cells, respectively. Membrane-permeant diacylglycerol analogues, which activated but did not down-regulate PKC, were devoid of growth-stimulating effects on melanocytes, even in the presence of the specific diacylglycerol kinase inhibitor, R59022. Together, these data show that PKC down-regulation, and not activation, correlates with the growth of melanocytes in culture.
Resumo:
Sapintoxin A (SAP A), a naturally occurring biologically active but non-promoting phorbol ester, acts as an effective in vitro mitogen for freshly derived human melanocytes. Seven days after addition of 50 nM SAP A there was a four to fivefold increase in melanocyte number over that observed in untreated control cultures comparable to that achieved with a 50 nM concentration of 12-0-tetradecanoylphorbol 13-acetate (TPA). The fluorescent stage 2 promoter sapintoxin D (SAP D) also supported the growth of these cells, with a 50 nM dose producing an increase in cell number comparable to that observed with 200 nM TPA. Similar results were obtained with an established, but non-tumorigenic, line of murine melanocytes. The same compounds exerted a potent anti-proliferative effect against transformed melanocyte lines of murine and human origin associated with morphological alterations and an increase in melanin production consistent with induced cytodifferentiation.
Resumo:
Sapintoxin A (SAP A) and 12-deoxyphorbol 13-phenylacetate (DOPP), are two biologically active but non-turnour-promoting phorbol esters that potently bind to and activate the phorbol ester receptor, protein kinase C (PKC). SAP A and DOPP cause a dose-dependent increase in the phosphorylation of an 80 kd (80K) substrate protein for PKC in Swiss 3T3 cells. A similar dose—response effect was seen with sapintoxin D (SAP D), the stage 2 promoting analogue of 12-O-tetradecanoylphorbol-13-acetate and the complete promoter phorbol 12,13-dibutyrate (PDB). The doses resulting in a half maximal phosphorylation of this protein (Ka were 20 nM (SAP A), 45 nM (DOPP), 23 nM (SAP D) and 37 nM (PDB). Both non-promoting and phorbol esters induced a dose-dependent inhibition of [125I]epidermal growth factor (EGF) binding to its receptor in Swiss 3T3 cells. The doses required for 50% inhibition of binding (Ki) were: 8 nM (SAP A), 16 nM (DOPP), 14 nM (SAP D) and 17 nM (PDB). The results clearly demonstrate that induction of phosphorylation of the Pu 80K phosphoprotein and inhibition of [125I]EGF binding in Swiss 3T3 cells following exposure to phorbol esters is independent of the tumour-promoting activity of these compounds. The fact that SAP A, DOPP, SAP D and PDB are mitogenic for a variety of cell types and that exposure to these compounds leads to 80K phosphorylation and inhibition of [125I]EGF binding, suggests that these early biological events may play a role in the mitogenic response induced by these compounds.
Resumo:
Five 12-hydroxy-daphnane esters were isolated from the leaves and twigs of Egyptian Thymelaea hirsuta. These compounds were identified as gnidicin, gniditrin, genkwadaphnin, the aliphatic C-12 ester, 12-O-heptadecenoyl-5-hydroxy-6,7-epoxy-resiniferonol-9,13,14-orthobenzoate and the novel aliphatic C-12 ester 12-O-butenyl-5-hydroxy-6,7-epoxy-resiniferonol-9,13-14-orthobenzoate.
Resumo:
A range of diterpene ester ligands with selective biological activity (e.g., irritant but not tumour promoting) were tested for their ability to induce Epstein-Barr virus (EBV) early antigen expression in the lymphoblastoid Raji cell line. All substituted compounds were found to be capable of inducing some antigen expression at nM−μM levels, including desacetyl-α-sapinine, a compound largely devoid of biological activity. The non-promoting, fluorescent compound, sapintoxin A, was virtually equipotent with promoting compounds. It was concluded that, although the assay has relevance to the specific condition of chronic diterpene ester exposure occurring in conjunction with high EBV infection rates, there was relatively poor correlation with mouse skin tumour promoting potential.
Resumo:
The addition of aldehydes to butane-2,3-diacetal has been investigated. The reaction was shown to be both regioselective and diastereoselective by 1H NMR spectroscopy. The configuration of the newly formed stereocenter was determined by Mosher’s ester analysis.
Resumo:
Free hydroxycinnamates, including caffeic, ferulic and p-coumaric acids, exhibit antioxidant and anticarcinogenic properties both in vitro and in animal models. Given that the gut flora has a major role in human nutrition and health, some of the beneficial effects of phenolic acids may be ascribed to the microflora involved in metabolism.
Resumo:
The present study was designed to examine whether the type of fat ingested in an initial test meal influences the response and density distribution of dietary-derived lipoproteins in the Svedberg flotation rate (Sf)>400, Sf 60 - 400 and Sf 20 - 60 lipoprotein fractions. A single-blind randomized within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester and triacylglycerol responses in each lipoprotein fraction following an initial test meal containing one of the oils and a second standardized test meal. For all dietary oils, late postprandial (300min) concentrations of triacylglycerol and apo B-48 were significantly higher in the Sf 60 - 400 fraction than in the Sf>400 fraction (P<0.02). Significantly greater apo B-48 incremental areas under the curve (IAUCs) were also observed in the Sf 60 - 400 fraction than in the Sf>400 fraction following palm oil, safflower oil and olive oil (P<0.04), with a similar non-significant trend for fish/safflower oil. Olive oil resulted in a significantly greater apo B-48 IAUC in the Sf>400 fraction (P<0.02) than did any of the other dietary oils, as well as a tendency for a higher IAUC in the Sf 60 - 400 fraction compared with the palm, safflower and fish/safflower oils. In conclusion, we have found that the majority of intestinally derived lipoproteins present in the circulation following meals enriched with saturated, polyunsaturated or monounsaturated fatty acids are of the density and size of small chylomicrons and chylomicron remnants. Olive oil resulted in a greater apo B-48 response compared with the other dietary oils following sequential test meals, suggesting the formation of a greater number of small (Sf 60 - 400) and large (Sf>400) apo B-48-containing lipoproteins in response to this dietary oil.