115 resultados para biomass productivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature, relative humidity, and air quality all affect the sensory system via thermo receptors in the skin and the olfactory system. Air quality is mainly defined by the contaminants in the air. However, the most persistent memory of any space is often its odor. Strong, emotional, and past experiences are awakened by the olfactory sense. Odors can also influence cognitive processes that affect creative task performance, as well as personal memories and moods. Besides nitrogen and oxygen, the air contains particles and many chemicals that affect the efficiency of the oxygenation process in the blood, and ultimately the air breathed affects thinking and concentration. It is important to show clients the value of spending more capital on high-quality buildings that promote good ventilation. The process of achieving indoor-air quality is a continual one throughout the design, construction, commissioning, and facilities management processes. This paper reviews the evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste biomass contains a multitude of complex carbohydrate molecules. These carbohydrates can be considered as a resource for the development of novel prebiotic oligosaccharides which may have better functionality than those currently established on the market. Enhanced persistence of the prebiotic effect along the colon, antipathogen effects, and more closely targeted prebiotics, might all be possible starting from plant polysaccharides. Of particular interest for the development of novel prebiotics are oligosaccharides from arabinoxylans and pectins. Oligosaccharides derived from the breakdown of both classes have received increased research attention recently. The development of prebiotics based upon biomass will demand the development of new manufacturing technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interwar British retailing has been characterized as having lower productivity, less developed managerial hierarchies and methods, and weaker scale economies than its US counterpart. This article examines comparative productivity for one major segment of large-scale retailing in both countries—the department store sector. Drawing on exceptionally detailed contemporary survey data, we show that British department stores in fact achieved superior performance in terms of operating costs, margins, profits, and stock-turn. While smaller British stores had lower labour productivity than US stores of equivalent size, TFP was generally higher for British stores, which also enjoyed stronger scale economies. We also examine the reasons behind Britain's surprisingly strong relative performance, using surviving original returns from the British surveys. Contrary to arguments that British retailers faced major barriers to the development of large-scale enterprises, that could reap economies of scale and scope and invest in machinery and marketing to support the growth of their primary sales functions, we find that British department stores enthusiastically embraced the retail ‘managerial revolution’—and reaped substantial benefits from this investment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bayesian Model Averaging approach to the estimation of lag structures is introduced, and applied to assess the impact of R&D on agricultural productivity in the US from 1889 to 1990. Lag and structural break coefficients are estimated using a reversible jump algorithm that traverses the model space. In addition to producing estimates and standard deviations for the coe¢ cients, the probability that a given lag (or break) enters the model is estimated. The approach is extended to select models populated with Gamma distributed lags of di¤erent frequencies. Results are consistent with the hypothesis that R&D positively drives productivity. Gamma lags are found to retain their usefulness in imposing a plausible structure on lag coe¢ cients, and their role is enhanced through the use of model averaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through increases in net primary production (NPP), elevated CO2 is hypothesizes to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient CO2 and 4 FACE plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. Four years after establishment, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by FACE. We observed a decrease of leaf N content in Betula and Alnus under FACE, while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by FACE. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated CO2 at this site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass conversion and expansion factors (BCEF) which convert tree stem volume to whole tree biomass and biomass allocation patterns in young trees were studied in order to estimate tree and stand biomass in naturally regenerated forests. European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea (Mattuschka) Liebl.) and Scots pine (Pinus sylvestris L.) stands were compared. Seven forest stands of each species were chosen to cover their natural distribution in Slovakia. Species specific BCEF are presented, generally showing a steep decrease in all species in the smallest trees, with the only exception in the case of branch BCEF in beech which grows with increasing tree size. The values of BCEF for all tree compartments stabilise in all species once trees reach about 60-70mm diameter at base. As they grow larger, all species increase their allocation to stem and branches, while decreasing the relative growth of roots and foliage. There are, however, clear differences between species and also between broadleaves and conifers in biomass allocation. This research shows that species specific coefficients must be used if we are to reduce uncertainties in estimates of carbon stock changes by afforestation and reforestation activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine roots play an important part in forest carbon, nutrient and water cycles. The turnover of fine roots constitutes a major carbon input to soils. Estimation of fine root turnover is difficult, labour intensive and is often compounded by artefacts created by soil disturbance. In this work, an alternative approach of using inclusion nets installed in an undisturbed soil profile was used to measure fine root production and was compared to the in-growth core method. There was no difference between fine root production estimated by the two methods in three southern taiga sites with contrasting soil conditions and tree species composition in the Central Forest State Biosphere Reserve, Russia. Expressed as annual production over standing biomass, Norway spruce fine root turnover was in the region of 0.10 to 0.24 y-1. The inclusion net technique is suitable for field based assessment of fine root production. There are several advantages over the in-growth core method, due to non-disturbance of the soil profile and its potential for very high rate of replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nineteen wheat cultivars, released from 1934 to 2000, were grown at two organic and two non-organic sites in each of 3 years. Assessments included grain yield, grain protein concentration, protein yield, disease incidence and green leaf area. The superiority of each cultivar (the sum of the squares of the differences between its mean in each environment and the mean of the best cultivar there, divided by twice the number of environments; CS) was calculated for yield, grain protein concentration and protein yield, and ranked in each environment. The yield and grain protein concentration CS were more closely correlated with cultivar release date at the non-organic sites than at organic sites. This difference may be attributed to higher yield levels with larger differences among cultivars at the non-organic sites, rather than to improved stability (i.e. similar ranks) across sites. The significant difference in the correlation of protein yield CS and cultivar age between organic and non-organic sites would support evidence that the ability to take up mineral nitrogen (N) compared to soil N has been a component of the selection conditions of more modern cultivars (released after 1989). This is supported by assessment of green leaf area (GLA), where more modern cultivars in the non-organic systems had greater late-season GLA, a trend that was not identified in organic conditions. This effect could explain the poor correlation between age and protein yield CS in organic compared to non-organic conditions where modern cultivars are selected to benefit from later nitrogen (N) availability which includes the spring nitrogen applications tailored to coincide with peak crop demand. Under organic management, N release is largely based on the breakdown of fertility-building crops incorporated (ploughed-in) in the previous autumn. The release of nutrients from these residues is dependent on the soil conditions, which includes temperature and microbial populations, in addition to the potential leaching effect of high winter rainfall in the UK. In organic cereal crops, early resource capture is a major advantage for maximizing the utilization of nutrients from residue breakdown. It is concluded that selection of cultivars under conditions of high agrochemical inputs selects for cultivars that yield well under maximal conditions in terms of nutrient availability and pest, disease and weed control. The selection conditions for breeding have a tendency to select cultivars which perform relatively better in non-organic compared to organic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reassesses the debate over the role of education in farm production in Bangladesh using a large dataset on rice producing households from 141 villages. Average and stochastic production frontier functions are estimated to ascertain the effect of education on productivity and efficiency. A full set of proxies for farm education stock variables are incorporated to investigate the ‘internal’ as well as ‘external’ returns to education. The external effect is investigated in the context of rural neighbourhoods. Our analysis reveals that in addition to raising rice productivity and boosting potential output, household education significantly reduces production inefficiencies. However, we are unable to find any evidence of the externality benefit of schooling – neighbour's education does not matter in farm production. We discuss the implication of these findings for rural education programmes in Bangladesh.