88 resultados para binary to multi-class classifiers
Resumo:
This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5-10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970-1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061 +/- 0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models' inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.
Resumo:
Many compounds in the environment have been shown capable of binding to cellular oestrogen receptors and then mimicking the actions of physiological oestrogens. The widespread origin and diversity in chemical structure of these environmental oestrogens is extensive but to date such compounds have been organic and in particular phenolic or carbon ring structures of varying structural complexity. Recent reports of the ability of certain metal ions to also bind to oestrogen receptors and to give rise to oestrogen agonist responses in vitro and in vivo has resulted in the realisation that environmental oestrogens can also be inorganic and such xenoestrogens have been termed metalloestrogens. This report highlights studies which show metalloestrogens to include aluminium, antimony, arsenite, barium, cadmium, chromium (Cr(II)), cobalt, copper, lead, mercury, nickel, selenite, tin and vanadate. The potential for these metal ions to add to the burden of aberrant oestrogen signalling within the human breast is discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
This article aims to create intellectual space in which issues of social inequality and education can be analyzed and discussed in relation to the multifaceted and multi-levelled complexities of the modern world. It is divided into three sections. Section One locates the concept of social class in the context of the modern nation state during the period after the Second World War. Focusing particularly on the impact of 'Fordism' on social organization and cultural relations, it revisits the articulation of social justice issues in the United Kingdom, and the structures put into place at the time to alleviate educational and social inequalities. Section Two problematizes the traditional concept of social class in relation to economic, technological and sociocultural changes that have taken place around the world since the mid-1980s. In particular, it charts some of the changes to the international labour market and global patterns of consumption, and their collective impact on the re-constitution of class boundaries in 'developed countries'. This is juxtaposed with some of the major social effects of neo-classical economic policies in recent years on the sociocultural base in developing countries. It discusses some of the ways these inequalities are reflected in education. Section Three explores tensions between the educational ideals of the 'knowledge economy' and the discursive range of social inequalities that are emerging within and beyond the nation state. Drawing on key motifs identified throughout, the article concludes with a reassessment of the concept of social class within the global cultural economy. This is discussed in relation to some of the major equity and human rights issues in education today.
Resumo:
We present a conceptual architecture for a Group Support System (GSS) to facilitate Multi-Organisational Collaborative Groups (MOCGs) initiated by local government and including external organisations of various types. Multi-Organisational Collaborative Groups (MOCGs) consist of individuals from several organisations which have agreed to work together to solve a problem. The expectation is that more can be achieved working in harmony than separately. Work is done interdependently, rather than independently in diverse directions. Local government, faced with solving complex social problems, deploy MOCGs to enable solutions across organisational, functional, professional and juridical boundaries, by involving statutory, voluntary, community, not-for-profit and private organisations. This is not a silver bullet as it introduces new pressures. Each member organisation has its own goals, operating context and particular approaches, which can be expressed as their norms and business processes. Organisations working together must find ways of eliminating differences or mitigating their impact in order to reduce the risks of collaborative inertia and conflict. A GSS is an electronic collaboration system that facilitates group working and can offer assistance to MOCGs. Since many existing GSSs have been primarily developed for single organisation collaborative groups, even though there are some common issues, there are some difficulties peculiar to MOCGs, and others that they experience to a greater extent: a diversity of primary organisational goals among members; different funding models and other pressures; more significant differences in other information systems both technologically and in their use than single organisations; greater variation in acceptable approaches to solve problems. In this paper, we analyse the requirements of MOCGs led by local government agencies, leading to a conceptual architecture for an e-government GSS that captures the relationships between 'goal', 'context', 'norm', and 'business process'. Our models capture the dynamics of the circumstances surrounding each individual representing an organisation in a MOCG along with the dynamics of the MOCG itself as a separate community.
Resumo:
A greedy technique is proposed to construct parsimonious kernel classifiers using the orthogonal forward selection method and boosting based on Fisher ratio for class separability measure. Unlike most kernel classification methods, which restrict kernel means to the training input data and use a fixed common variance for all the kernel terms, the proposed technique can tune both the mean vector and diagonal covariance matrix of individual kernel by incrementally maximizing Fisher ratio for class separability measure. An efficient weighted optimization method is developed based on boosting to append kernels one by one in an orthogonal forward selection procedure. Experimental results obtained using this construction technique demonstrate that it offers a viable alternative to the existing state-of-the-art kernel modeling methods for constructing sparse Gaussian radial basis function network classifiers. that generalize well.
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.
Resumo:
We propose a simple yet computationally efficient construction algorithm for two-class kernel classifiers. In order to optimise classifier's generalisation capability, an orthogonal forward selection procedure is used to select kernels one by one by minimising the leave-one-out (LOO) misclassification rate directly. It is shown that the computation of the LOO misclassification rate is very efficient owing to orthogonalisation. Examples are used to demonstrate that the proposed algorithm is a viable alternative to construct sparse two-class kernel classifiers in terms of performance and computational efficiency.
Resumo:
The 1930s witnessed an intense struggle between gas and electricity suppliers for the working class market, where the incumbent utility—gas—was also a reasonably efficient (and cheaper) General Purpose Technology for most domestic uses. Local monopolies for each supplier boosted substitution effects between fuel types—as alternative fuels constituted the only local competition. Using newly-rediscovered returns from a major national household expenditure survey, we employ geographically-determined instrumental variables, more commonly used in the industrial organization literature, to show that gas provided a significant competitor, tempering electricity prices, while electricity demand was also responsive to marketing initiatives.
Resumo:
Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.