123 resultados para balance impairment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The cognitive bases of language impairment in specific language impairment (SLI) and autism spectrum disorders (ASD) were investigated in a novel non-word comparison task which manipulated phonological short-term memory (PSTM) and speech perception, both implicated in poor non-word repetition. Aims: This study aimed to investigate the contributions of PSTM and speech perception in non-word processing and whether individuals with SLI and ASD plus language impairment (ALI) show similar or different patterns of deficit in these cognitive processes. Method & Procedures: Three groups of adolescents (aged 14–17 years), 14 with SLI, 16 with ALI, and 17 age and non-verbal IQ matched typically developing (TD) controls, made speeded discriminations between non-word pairs. Stimuli varied in PSTM load (two- or four-syllables) and speech perception load (mismatches on a word-initial or word-medial segment). Outcomes & Results: Reaction times showed effects of both non-word length and mismatch position and these factors interacted: four-syllable and word-initial mismatch stimuli resulted in the slowest decisions. Individuals with language impairment showed the same pattern of performance as those with typical development in the reaction time data. A marginal interaction between group and item length was driven by the SLI and ALI groups being less accurate with long items than short ones, a difference not found in the TD group. Conclusions & Implications: Non-word discrimination suggests that there are similarities and differences between adolescents with SLI and ALI and their TD peers. Reaction times appear to be affected by increasing PSTM and speech perception loads in a similar way. However, there was some, albeit weaker, evidence that adolescents with SLI and ALI are less accurate than TD individuals, with both showing an effect of PSTM load. This may indicate, at some level, the processing substrate supporting both PSTM and speech perception is intact in adolescents with SLI and ALI, but also in both there may be impaired access to PSTM resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-word repetition (NWR) was investigated in adolescents with typical development, Specific Language Impairment (SLI) and Autism Plus language Impairment (ALI) (n = 17, 13, 16, and mean age 14;4, 15;4, 14;8 respectively). The study evaluated the hypothesis that poor NWR performance in both groups indicates an overlapping language phenotype (Kjelgaard & Tager-Flusberg, 2001). Performance was investigated both quantitatively, e.g. overall error rates, and qualitatively, e.g. effect of length on repetition, proportion of errors affecting phonological structure, and proportion of consonant substitutions involving manner changes. Findings were consistent with previous research (Whitehouse, Barry, & Bishop, 2008) demonstrating a greater effect of length in the SLI group than the ALI group, which may be due to greater short-term memory limitations. In addition, an automated count of phoneme errors identified poorer performance in the SLI group than the ALI group. These findings indicate differences in the language profiles of individuals with SLI and ALI, but do not rule out a partial overlap. Errors affecting phonological structure were relatively frequent, accounting for around 40% of phonemic errors, but less frequent than straight Consonant-for-Consonant or vowel-for-vowel substitutions. It is proposed that these two different types of errors may reflect separate contributory mechanisms. Around 50% of consonant substitutions in the clinical groups involved manner changes, suggesting poor auditory-perceptual encoding. From a clinical perspective algorithms which automatically count phoneme errors may enhance sensitivity of NWR as a diagnostic marker of language impairment. Learning outcomes: Readers will be able to (1) describe and evaluate the hypothesis that there is a phenotypic overlap between SLI and Autism Spectrum Disorders (2) describe differences in the NWR performance of adolescents with SLI and ALI, and discuss whether these differences support or refute the phenotypic overlap hypothesis, and (3) understand how computational algorithms such as the Levenshtein Distance may be used to analyse NWR data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retention of peatland carbon (C) and the ability to continue to draw down and store C from the atmosphere is not only important for the UK terrestrial carbon inventory, but also for a range of ecosystem services, the landscape value and the ecology and hydrology of ~15% of the land area of the UK. Here we review the current state of knowledge on the C balance of UK peatlands using several studies which highlight not only the importance of making good flux measurements, but also the spatial and temporal variability of different flux terms that characterise a landscape affected by a range of natural and anthropogenic processes and threats. Our data emphasise the importance of measuring (or accurately estimating) all components of the peatland C budget. We highlight the role of the aquatic pathway and suggest that fluxes are higher than previously thought. We also compare the contemporary C balance of several UK peatlands with historical rates of C accumulation measured using peat cores, thus providing a long-term context for present-day measurements and their natural year-on-year variability. Contemporary measurements from 2 sites suggest that current accumulation rates (–56 to –72 g C m–2 yr–1) are at the lower end of those seen over the last 150 yr in peat cores (–35 to –209 g C m–2 yr–1). Finally, we highlight significant current gaps in knowledge and identify where levels of uncertainty are high, as well as emphasise the research challenges that need to be addressed if we are to improve the measurement and prediction of change in the peatland C balance over future decades.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six land surface models and five global hydrological models participate in a model intercomparison project (WaterMIP), which for the first time compares simulation results of these different classes of models in a consistent way. In this paper the simulation setup is described and aspects of the multi-model global terrestrial water balance are presented. All models were run at 0.5 degree spatial resolution for the global land areas for a 15-year period (1985-1999) using a newly-developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm year-1 (60,000 to 85,000 km3 year-1) and simulated runoff ranges from 290 to 457 mm year-1 (42,000 to 66,000 km3 year-1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically-based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between model are major sources of uncertainty. Climate change impact studies thus need to use not only multiple climate models, but also some other measure of uncertainty, (e.g. multiple impact models).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spoken word recognition, during gating, appears intact in specific language impairment (SLI). This study used gating to investigate the process in adolescents with autism spectrum disorders plus language impairment (ALI). Adolescents with ALI, SLI, and typical language development (TLD), matched on nonverbal IQ listened to gated words that varied in frequency (low/high) and number of phonological onset neighbors (low/high density). Adolescents with ALI required more speech input to initially identify low-frequency words with low competitor density than those with SLI and those with TLD, who did not differ. These differences may be due to less well specified word form representations in ALI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m. The purpose of this study is to quantify the impact of climate change on Svalbard’s surface mass balance (SMB) and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard’s SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard’s glaciers due to future Arctic warming.