101 resultados para automated semantic integration
Resumo:
We investigated whether it is possible to control the temporal window of attention used to rapidly integrate visual information. To study the underlying neural mechanisms, we recorded ERPs in an attentional blink task, known to elicit Lag-1 sparing. Lag-1 sparing fosters joint integration of the two targets, evidenced by increased order errors. Short versus long integration windows were induced by showing participants mostly fast or slow stimuli. Participants expecting slow speed used a longer integration window, increasing joint integration. Difference waves showed an early (200 ms post-T2) negative and a late positive modulation (390 ms) in the fast group, but not in the slow group. The modulations suggest the creation of a separate event for T2, which is not needed in the slow group, where targets were often jointly integrated. This suggests that attention can be guided by global expectations of presentation speed within tens of milliseconds.
Resumo:
If people monitor a visual stimulus stream for targets they often miss the second (T2) if it appears soon after the first (T1)-the attentional blink. There is one exception: T2 is often not missed if it appears right after T1, i.e., at lag 1. This lag-l sparing is commonly attributed to the possibility that T1 processing opens an attentional gate, which may be so sluggish that an early T2 can slip in before it closes. We investigated why the gate may close and exclude further stimuli from processing. We compared a control approach, which assumes that gate closing is exogenously triggered by the appearance of nontargets, and an integration approach, which assumes that gate closing is under endogenous control. As predicted by the latter but not the former, T2 performance and target reversals were strongly affected by the temporal distance between T1 and T2, whereas the presence or the absence of a nontarget intervening between T1 and T2 had little impact. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone. The methods are also limited to optical see-through HMDs. Building on our existing HMD calibration method [1], we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside an HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in various positions. The locations of image features on the calibration object are then re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the display’s intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner in both see-through and in non-see-through modes and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors and involves no error-prone human measurements.
Resumo:
This paper addresses the requirements for a Work/flow Management System that is intended to automate the production and distribution chain for cross-media content which is by nature multi-partner and multi-site. It advocates the requirements for an ontology-based object lifecycle tracking within work/flow integration by identifying various types of interfaces, object life cycles and the work-flow interaction environments within the AXMEDIS Framework.
Resumo:
In order to organize distributed educational resources efficiently, to provide active learners an integrated, extendible and cohesive interface to share the dynamically growing multimedia learning materials on the Internet, this paper proposes a generic resource organization model with semantic structures to improve expressiveness, scalability and cohesiveness. We developed an active learning system with semantic support for learners to access and navigate through efficient and flexible manner. We learning resources in an efficient and flexible manner. We provide facilities for instructors to manipulate the structured educational resources via a convenient visual interface. We also developed a resource discovering and gathering engine based on complex semantic associations for several specific topics.
Resumo:
A novel framework for multimodal semantic-associative collateral image labelling, aiming at associating image regions with textual keywords, is described. Both the primary image and collateral textual modalities are exploited in a cooperative and complementary fashion. The collateral content and context based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix, of the visual keywords, A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. Finally, we use Self Organising Maps to examine the classification and retrieval effectiveness of the proposed high-level image feature vector model which is constructed based on the image labelling results.
Research agenda in context-specific semantic resolution of security and QoS for ambient intelligence
Resumo:
A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.