77 resultados para arine renewable energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is currently an increased interest of Government and Industry in the UK, as well as at the European Community level and International Agencies (i.e. Department of Energy, American International Energy Agency), to improve the performance and uptake of Ground Coupled Heat Pumps (GCHP), in order to meet the 2020 renewable energy target. A sound knowledge base is required to help inform the Government Agencies and advisory bodies; detailed site studies providing reliable data for model verification have an important role to play in this. In this study we summarise the effect of heat extraction by a horizontal ground heat exchanger (installed at 1 m depth) on the soil physical environment (between 0 and 1 m depth) for a site in the south of the UK. Our results show that the slinky influences the surrounding soil by significantly decreasing soil temperatures. Furthermore, soil moisture contents were lower for the GCHP soil profile, most likely due to temperature-gradient related soil moisture migration effects and a decreased hydraulic conductivity, the latter as a result of increased viscosity (caused by the lower temperatures for the GCHP soil profile). The effects also caused considerable differences in soil thermal properties. This is the first detailed mechanistic study conducted in the UK with the aim to understand the interactions between the soil, horizontal heat exchangers and the aboveground environment. An increased understanding of these interactions will help to achieve an optimum and sustainable use of the soil heat resources in the future. The results of this study will help to calibrate and verify a simulation model that will provide UK-wide recommendations to improve future GCHP uptake and performance, while safeguarding the soil physical resources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A carbon reduction strategy for a historic Grade 1 listed office building in London is presented. The study evaluates the impact of49 different carbon abatement options, quantified using building simulation software, auditing procedures and qualitative methods. The impact of each option is assessed against three criteria: carbon abatement potential, practicality and cost. The strategy comprises of18interventions,integrated within 12 key recommendations. Accumulative reduction of 37% (below a 2009 carbon emissions baseline)appears achievable and only feasible with heavy reliance on changes in occupant behaviour. This theme appears central in achieving realistic and significant carbon savings from listed buildings, where planning constraints relinquish potential for major building fabric alteration and renewable energy installations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a numerical study of urban air-flow for a group of five buildings that is located at the University of Reading in the United Kingdom. The airflow around these buildings has been simulated by using ANSYS CFD software package. In this study, the association between certain architectural forms: a street canyon, a semi-closure, and a courtyard-like space in a low-rise building complex, and the wind environment were investigated. The analysis of CFD results has provided detailed information on the wind patterns of these urban built forms. The numerical results have been compared with the experimental measurements within the building complex. The observed characteristics of urban wind pattern with respect to the built structures are presented as a guideline. This information is needed for the design and/or performance assessments of systems such as passive and low energy design approach, a natural or hybrid ventilation, and passive cooling. Also, the knowledge of urban wind patterns allows us to develop better design options for the application of renewable energy technologies within urban environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In October 2008 UK government announced very ambitious commitment to reduce greenhouse gas emissions of at least 34% by 2020 and by 80% by 2050 against a 1990 baseline. Consequently the government declares that new homes should be built to high environmental standards which means that from 2016 new homes will have to be built to a Zero Carbon standard. The paper sets out to present UK zero carbon residential development achieving the highest, Level 6 of Code for Sustainable Homes standard. Comprehensive information is provided about various environmental aspects of the housing development. Special attention is given to energy efficiency features of the houses and low carbon district heating solution which include biomass boiler, heat pumps, solar collectors and photovoltaic panels. The paper presents also challenges which designers and builders had to face delivering houses of the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Airflow through urban environments is one of the most important factors affecting human health, outdoor and indoor thermal comfort, air quality and the energy performance of buildings. This paper presents a study on the effects of wind induced airflows through urban built form using statistical analysis. The data employed in the analysis are from the year-long simultaneous field measurements conducted at the University of Reading campus in the United Kingdom. In this study, the association between typical architectural forms and the wind environment are investigated; such forms include: a street canyon, a semi-closure, a courtyard form and a relatively open space in a low-rise building complex. Measured data captures wind speed and wind direction at six representative locations and statistical analysis identifies key factors describing the effects of built form on the resulting airflows. Factor analysis of the measured data identified meteorological and architectural layout factors as key factors. The derivation of these factors and their variation with the studied built forms are presented in detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various studies investigating the future impacts of integrating high levels of renewable energy make use of historical meteorological (met) station data to produce estimates of future generation. Hourly means of 10m horizontal wind are extrapolated to a standard turbine hub height using the wind profile power or log law and used to simulate the hypothetical power output of a turbine at that location; repeating this procedure using many viable locations can produce a picture of future electricity generation. However, the estimate of hub height wind speed is dependent on the choice of the wind shear exponent a or the roughness length z0, and requires a number of simplifying assumptions. This paper investigates the sensitivity of this estimation on generation output using a case study of a met station in West Freugh, Scotland. The results show that the choice of wind shear exponent is a particularly sensitive parameter which can lead to significant variation of estimated hub height wind speed and hence estimated future generation potential of a region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The built environment in China is required to achieve a 50% reduction in carbon emissions by 2020 against the 1980 design standard. A particular challenge is how to maintain acceptable comfort conditions through the hot humid summers and cold desiccating winters of its continental climate regions. Fully air-conditioned sealed envelopes, often fully glazed, are becoming increasingly common in these regions. Remedial strategies involve technical refinements to the air-handling equipment and a contribution from renewable energy sources in an attempt to achieve the prescribed net reduction in energy use. However an alternative hybrid environmental design strategy is developed in this research project. It exploits observed temperate periods of weeks, days, even hours in duration to free-run an office and exhibition building configured to promote natural stack ventilation when ambient conditions permit and mechanical ventilation when conditions require it, the two modes delivered through the same physical infrastructure. The proposal is modelled in proprietary software and the methodology adopted is described. The challenge is compounded by its first practical application to an existing reinforced concrete frame originally designed to receive a highly glazed envelope. This original scheme is reviewed in comparison. Furthermore the practical delivery of the proposal value engineered out a proportion of the ventilation stacks. The likely consequence of this for the environmental performance of the building is investigated through a sensitivity study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The feasibility of halving greenhousegasemissions from hotels by 2030 has been studied as part of the Carbon Vision Buildings Programme. The aim of that programme was to study ways of reducing emissions from the existing stock because it will be responsible for the majority of building emissions over the next few decades. The work was carried out using detailed computer simulation using the ESP-r tool. Two hotels were studied, one older and converted and the other newer and purpose-built, with the aim of representing the most common UKhotel types. The effects were studied of interventions expected to be available in 2030 including fabric improvements, HVAC changes, lighting and appliance improvements and renewable energy generation. The main finding was that it is technically feasible to reduce emissions by 50% without compromising guest comfort. Ranking of the interventions was problematical for several reasons including interdependence and the impacts on boiler sizing of large reductions in the heating load

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Daylighting systems can offer energy savings primarily by reducing electric lighting usage. Accurate predictive models of daylighting system performances are crucial for effective design and implementation of this renewable energy technology. A comparative study of predictive methods was performed and the use of a commercial raytracing software program was validated as a method of predicting light pipe performance. Raytracing simulation was shown to more accurately predict transmission effi ciency than existing analytical methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Meteorological (met) station data is used as the basis for a number of influential studies into the impacts of the variability of renewable resources. Real turbine output data is not often easy to acquire, whereas meteorological wind data, supplied at a standardised height of 10 m, is widely available. This data can be extrapolated to a standard turbine height using the wind profile power law and used to simulate the hypothetical power output of a turbine. Utilising a number of met sites in such a manner can develop a model of future wind generation output. However, the accuracy of this extrapolation is strongly dependent on the choice of the wind shear exponent alpha. This paper investigates the accuracy of the simulated generation output compared to reality using a wind farm in North Rhins, Scotland and a nearby met station in West Freugh. The results show that while a single annual average value for alpha may be selected to accurately represent the long term energy generation from a simulated wind farm, there are significant differences between simulation and reality on an hourly power generation basis, with implications for understanding the impact of variability of renewables on short timescales, particularly system balancing and the way that conventional generation may be asked to respond to a high level of variable renewable generation on the grid in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The variability of renewable energy is widely recognised as a challenge for integrating high levels of renewable generation into electricity systems. However, to explore its implications effectively, variability itself should first be clearly understood. This is particularly true for national electricity systems with high planned penetration of renewables and limited interconnection such as the UK. Variability cannot be considered as a distinct resource property with a single measurable parameter, but is a multi-faceted concept best described by a range of distinct characteristics. This paper identifies relevant characteristics of variability, and considers their implications for energy research. This is done through analysis of wind, solar and tidal current resources, with a primary focus on the Bristol Channel region in the UK. The relationship with electricity demand is considered, alongside the potential benefits of resource diversity. Analysis is presented in terms of persistence, distribution, frequency and correlation between supply and demand. Marked differences are seen between the behaviours of the individual resources, and these give rise to a range of different implications for system integration. Wind shows strong persistence and a useful seasonal pattern, but also a high spread in energy levels at timescales beyond one or two days. The solar resource is most closely correlated with electricity demand, but is undermined by night-time zero values and an even greater spread of monthly energy delivered than wind. In contrast, the tidal resource exhibits very low persistence, but also much greater consistency in energy values assessed across monthly time scales. Whilst this paper focuses primarily on the behaviour of resources, it is noted that discrete variability characteristics can be related to different system impacts. Persistence and predictability are relevant for system balancing, whereas statistical distribution is more relevant when exploring issues of asset utilisation and energy curtailment. Areas of further research are also identified, including the need to assess the value of predictability in relation to other characteristics.