81 resultados para agricultural resources use efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. Methodology and Findings: Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. Conclusions: This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast-and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.Habitat conversion for agriculture is a major driver of biodiversity loss, but our understanding of the demographic processes involved remains poor. We typically investigate the impacts of agriculture in isolation even though populations are likely to experience multiple, concurrent changes in the environment (e.g. land and climate change). Drivers of environmental change may interact to affect demography but the mechanisms have yet to be explored fully in wild populations. 2.Here, we investigate the mechanisms linking agricultural land-use with breeding success using long-term data for the formerly Critically Endangered Mauritius kestrel Falco punctatus; a tropical forest specialist that also occupies agricultural habitats. We specifically focused on the relationship between breeding success, agriculture and the timing of breeding because the latter is sensitive to changes in climatic conditions (spring rainfall), and enables us to explore the interactive effects of different (land and climate) drivers of environmental change. 3.Breeding success, measured as egg survival to fledging, declines seasonally in this population, but we found that the rate of this decline became increasingly rapid as the area of agriculture around a nest site increased. If the relationship between breeding success and agriculture was used in isolation to estimate the demographic impact of agriculture it would significantly under-estimate breeding success in dry (early) springs, and over-estimate breeding success in wet (late) springs. 4.Analysis of prey delivered to nests suggests that the relationship between breeding success and agriculture might be due, in part, to spatial variation in the availability of native, arboreal geckos. 5.Synthesis and applications. Agriculture modifies the seasonal decline in breeding success in this population. As springs are becoming wetter in our study area and since the kestrels breed later in wetter springs, the impact of agriculture on breeding success will become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aimed to investigate the implications of changing agricultural land use from food production towards increased cashew cultivation for food security and poverty alleviation in Jaman North District, Brong-Ahafo Region of Ghana. Based on qualitative, participatory research with a total of 60 participants, the research found that increased cashew production had led to improvements in living standards for many farmers and their children over recent years. Global demand for cashew is projected to continue to grow rapidly in the immediate future and cashew-growing areas of Ghana are well placed to respond to this demand. Cashew farmers however were subject to price fluctuations in the value of Raw Cashew Nuts (RCN) due to unequal power relations with intermediaries and export buyer companies and global markets, in addition to other vulnerabilities that constrained the quality and quantity of cashew and food crops they could produce. The expansion of cashew plantations was leading to pressure on the remaining family lands available for food crop production, which community members feared could potentially compromise the food security of rural communities and the land inheritance of future generations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958–2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate projections show Australia becoming significantly warmer during the 21st century, and precipitation decreasing over much of the continent. Such changes are conventionally considered to increase wildfire risk. Nevertheless, we show that burnt area increases in southern Australia, but decreases in northern Australia. Overall the projected increase in fire is small (0.72–1.31% of land area, depending on the climate scenario used), and does not cause a decrease in carbon storage. In fact, carbon storage increases by 3.7–5.6 Pg C (depending on the climate scenario used). Using a process-based model of vegetation dynamics, vegetation–fire interactions and carbon cycling, we show increased fire promotes a shift to more fire-adapted trees in wooded areas and their encroachment into grasslands, with an overall increase in forested area of 3.9–11.9%. Both changes increase carbon uptake and storage. The increase in woody vegetation increases the amount of coarse litter, which decays more slowly than fine litter hence leading to a relative reduction in overall heterotrophic respiration, further reducing carbon losses. Direct CO2 effects increase woody cover, water-use efficiency and productivity, such that carbon storage is increased by 8.5–14.8 Pg C compared to simulations in which CO2 is held constant at modern values. CO2 effects tend to increase burnt area, fire fluxes and therefore carbon losses in arid areas, but increase vegetation density and reduce burnt area in wooded areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper evaluates the impact of the crusades on the landscape and environment of northern Latvia between the 13th–16th centuries (medieval Livonia). The crusades replaced tribal societies in the eastern Baltic with a religious state (Ordenstaat) run by the military orders and their allies, accompanied by significant social, cultural and economic developments. These changes have previously received little consideration in palaeoenvironmental studies of past land use in the eastern Baltic region, but are fundamental to understanding the development and expansion of a European Christian identity. Sediment cores from Lake Trikāta, located adjacent to a medieval castle and settlement, were studied using pollen, macrofossils, loss-on-ignition and magnetic susceptibility. Our results show that despite continuous agricultural land use from 500 BC, the local landscape was still densely wooded until the start of the crusades in AD 1198 when a diversified pattern of pasture, meadow and arable land use was established. Colonisation followed the crusades, although in Livonia this occurred on a much smaller scale than in the rest of the Ordenstaat; Trikāta is atypical showing significant impact following the crusades with many other palaeoenvironmental studies only revealing more limited impact from the 14th century and later. Subsequent wars and changes in political control in the post-medieval period had little apparent effect on agricultural land use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundnuts cultivated in the semiarid tropics are often exposed to water stress (mid-season and end season) and high temperature (> 34 °C) during the critical stages of flowering and pod development. This study evaluated the effects of both water stress and high temperature under field conditions at ICRISAT, India. Treatments included two irrigations (full irrigation, 100 % of crop evapotranspiration; and water stress, 40 % of crop evapotranspiration), four temperature treatments from a combination of two sowing dates and heat tunnels with mean temperatures from sowing to maturity of 26.3° (T1), 27.3° (T2), 29.0° (T3) and 29.7 °C (T4) and two genotypes TMV2 and ICGS 11. The heat tunnels were capable of raising the day temperature by > 10 °C compared to ambient. During the 20-day high-temperature treatment at flowering, mean temperatures were 33.8° (T1), 41.6° (T2), 38.7° (T3) and 43.5°C (T4). The effects of water stress and high temperature were additive and temporary for both vegetative and pod yield, and disappeared as soon as high-temperature stress was removed. Water use efficiency was significantly affected by the main effects of temperature and cultivar and not by water stress treatments. Genotypic differences for tolerance to high temperature can be attributed to differences in flowering pattern, flower number, peg-set and harvest index. It can be inferred from this study that genotypes that are tolerant to water stress are also tolerant to high temperature under field conditions. In addition, genotypes with an ability to establish greater biomass and with a significantly greater partitioning of biomass to pod yield would be suitable for sustaining higher yields in semiarid tropics with high temperature and water stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing new perennial pasture legumes for low-P soils is a priority for Australian Mediterranean agro-ecosystems, where soil P availability is naturally low. As legumes tend to require higher P inputs than non-legumes, the ability of these plants to fix N2 under varying soil P levels must be determined. Therefore, the objective of this study was to investigate the influence of soil P supply on plant N status and nodule formation in 11 perennial legumes, including some novel pasture species. We investigated the effect of applying soil P, ranging from 0 to 384 μg P/g dry soil, on plant N status and nodulation in a glasshouse. Without exogenous P supply, shoot N concentration and N : P ratio were higher than at 6 μg P/g soil. Shoot N concentration and N : P ratio then changed little with further increase in P supply. There was a close positive correlation between the number of nodules and shoot P concentration in 7 of the 11 species. Total nodule dry weight and the percentage of plant dry weight that consisted of nodules increased when P supply increased from 6 to 48 μg P/g. Without exogenous P addition, N : P ratios partitioned into a two-group distribution, with species having a N : P ratio of either >70 or <50 g/g. We suggest that plants with a high N : P ratio may take up N from the soil constitutively, while those with a low N : P ratio may regulate their N uptake in relation to internal P concentration. The flexibility of the novel pasture legumes in this study to adjust their leaf N concentrations under different levels of soil P supplements other published evidence of good growth and high P uptake and P-use efficiency under low soil P supply and suggests their potential as pasture plants in low-P soils in Australian Mediterranean agro-ecosystems warrants further attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural land use in much of Brong-Ahafo region, Ghana has been shifting from the production of food crops towards increased cashew nut cultivation in recent years. This article explores everyday, less visible, gendered and generational struggles over family farms in West Africa, based on qualitative, participatory research in a rural community that is becoming increasingly integrated into the global capitalist system. As a tree crop, cashew was regarded as an individual man's property to be passed on to his wife and children rather than to extended family members, which differed from the communal land tenure arrangements governing food crop cultivation. The tendency for land, cash crops and income to be controlled by men, despite women's and young people's significant labour contributions to family farms, and for women to rely on food crop production for their main source of income and for household food security, means that women and girls are more likely to lose out when cashew plantations are expanded to the detriment of land for food crops. Intergenerational tensions emerged when young people felt that their parents and elders were neglecting their views and concerns. The research provides important insights into gendered and generational power relations regarding land access, property rights and intra-household decision-making processes. Greater dialogue between genders and generations may help to tackle unequal power relations and lead to shared decision-making processes that build the resilience of rural communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural management of grassland in lowland Britain has changed fundamentally in the last 50 years, resulting in spatial and structural uniformity within the pastoral landscape. The full extent to which these changes may have reduced the suitability of grassland as foraging habitat for birds is unknown. This study investigated the mechanisms by which these changes have impacted on birds and their food supplies. We quantified field use by birds in summer and winter in two grassland areas of lowland England (Devon and Buckinghamshire) over 3 years, relating bird occurrence to the management, sward structure and seed and invertebrate food resources of individual fields. Management intensity was defined in terms of annual nitrogen input. There was no consistent effect of management intensity on total seed head production, although those of grasses generally increased with inputs while forbs were rare throughout. Relationships between management intensity and abundance of soil and epigeal invertebrates were complex. Soil beetle larvae were consistently lower in abundance, and surface-active beetle larvae counts consistently higher, in intensively managed fields. Foliar invertebrates showed more consistent negatively relationships with management intensity. Most bird species occurred at low densities. There were consistent relationships across regions and years between the occurrence of birds and measures of field management. In winter, there was a tendency towards higher occupancy of intensively managed fields by species feeding on soil invertebrates. In summer, there were few such relationships, although many species avoided fields with tall swards. Use of fields by birds was generally not related to measures of seed or invertebrate food abundance. While granivorous species were perhaps too rare to detect a relationship, in insectivores the strong negative relationships (in summer) with sward height suggested that access to food may be the critical factor. While it appears that intensification of grassland management has been deleterious to the summer food resources of insectivorous birds that use insects living within the grass sward, intensification may have been beneficial to several species in winter through the enhancement of soil invertebrates. Synthesis and applications. We suggest that attempts to restore habitat quality for birds in grassland landscapes need to create a range of management intensities and sward structures at the field and farm scales. A greater understanding of methods to enhance prey accessibility, as well as abundance, for insectivorous birds is required.