49 resultados para advantages of networking
Resumo:
Functional advantages of probiotics combined with interesting composition of oat were considered as an alternative to dairy products. In this study, fermentation of oat milk with Lactobacillus reuteri and Streptococcus thermophilus was analysed to develop a new probiotic product. Central composite design with response surface methodology was used to analyse the effect of different factors (glucose, fructose, inulin and starters) on the probiotic population in the product. Optimised formulation was characterised throughout storage time at 4 ℃ in terms of pH, acidity, β-glucan and oligosaccharides contents, colour and rheological behaviour. All formulations studied were adequate to produce fermented foods and minimum dose of each factor was considered as optimum. The selected formulation allowed starters survival above 107/cfu ml to be considered as a functional food and was maintained during the 28 days controlled. β-glucans remained in the final product with a positive effect on viscosity. Therefore, a new probiotic non-dairy milk was successfully developed in which high probiotic survivals were assured throughout the typical yoghurt-like shelf life.
Resumo:
Research in Bid Tender Forecasting Models (BTFM) has been in progress since the 1950s. None of the developed models were easy-to-use tools for effective use by bidding practitioners because the advanced mathematical apparatus and massive data inputs required. This scenario began to change in 2012 with the development of the Smartbid BTFM, a quite simple model that presents a series of graphs that enables any project manager to study competitors using a relatively short historical tender dataset. However, despite the advantages of this new model, so far, it is still necessary to study all the auction participants as an indivisible group; that is, the original BTFM was not devised for analyzing the behavior of a single bidding competitor or a subgroup of them. The present paper tries to solve that flaw and presents a stand-alone methodology useful for estimating future competitors’ bidding behaviors separately.
Resumo:
Terrain following coordinates are widely used in operational models but the cut cell method has been proposed as an alternative that can more accurately represent atmospheric dynamics over steep orography. Because the type of grid is usually chosen during model implementation, it becomes necessary to use different models to compare the accuracy of different grids. In contrast, here a C-grid finite volume model enables a like-for-like comparison of terrain following and cut cell grids. A series of standard two-dimensional tests using idealised terrain are performed: tracer advection in a prescribed horizontal velocity field, a test starting from resting initial conditions, and orographically induced gravity waves described by nonhydrostatic dynamics. In addition, three new tests are formulated: a more challenging resting atmosphere case, and two new advection tests having a velocity field that is everywhere tangential to the terrain following coordinate surfaces. These new tests present a challenge on cut cell grids. The results of the advection tests demonstrate that accuracy depends primarily upon alignment of the flow with the grid rather than grid orthogonality. A resting atmosphere is well-maintained on all grids. In the gravity waves test, results on all grids are in good agreement with existing results from the literature, although terrain following velocity fields lead to errors on cut cell grids. Due to semi-implicit timestepping and an upwind-biased, explicit advection scheme, there are no timestep restrictions associated with small cut cells. We do not find the significant advantages of cut cells or smoothed coordinates that other authors find.
Resumo:
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere–surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1–2 km.