111 resultados para X-ray crystal structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rigid [6]ferrocenophane, L-1, was synthesised by condensation of 1,1'-ferrocene dicarbaldehyde with trans-1,2-diaminocyclohexane in high dilution at r.t. followed by reduction. When other experimental conditions were employed, the [6,6,6]ferrocenephane (L-2) was also obtained. Both compounds were characterised by single crystal X-ray crystallography. The protonation of L-1 and its metal complexation were evaluated by the effect on the electron-transfer process of the ferrocene (fc) unit of L-1 using cyclic voltammetry (CV) and square wave voltammetry (SWV) in anhydrous CH3CN solution and in 0.1 M (Bu4NPF6)-Bu-n as the supporting electrolyte. The electrochemical process of L-1 between 300 and 900 mV is complicated by amine oxidation. On the other hand, an anodic shift from the fc/fc(+) wave of L-1 of 249, 225, 81 and 61 mV was observed by formation of Zn2+, Ni2+, Pd2+ and Cu2+ complexes, respectively. Whereas Mg2+ and Ca2+ only have with L-1 weak interactions and they promote the acid-base equilibrium of L-1. This reveals that L-1 is an interesting molecular redox sensor for detection of Zn2+ and Ni2+, although the kinetics of the Zn2+ complex formation is much faster than that of the Ni2+ one. The X-ray crystal structure of [(PdLCl2)-Cl-1] was determined and showed a square-planar environment with Pd(II) and Fe(II) centres separated by 3.781(1) angstrom. The experimental anodic shifts were elucidated by DFT calculations on the [(MLCl2)-Cl-1] series and they are related to the nature of the HOMO of these complexes and a four-electron, two-orbital interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Ni(ClO4)(2)center dot 6H(2)O in methanol in 3:1 M proportion at room temperature yields [NiL3](ClO4)(2)center dot 2H(2)O. The X-ray crystal structure of the cation Nil(3)(2+) has been determined. Aminolysis of the three epoxide rings in NiL32+ by 4-substituted anilines in boiling water without any Lewis acid catalyst gives a family of Ni(II) complexes with octahedral NiL62+ core. In these complexes, crystal field splitting 10Dq varies from 11601 to 15798 cm(-1) in acetonitrile. The variation in 10Dq is found to be satisfactorily linear (r(2) = 0.951) with the Hammett sigma(R) parameter of the substituent on the anilino fragment. 10Dq increases with the increase in the electron donation ability of the substituent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of two new sodium perchlorate adducts (1:2 and 1:3) with copper(II) "ligand-complexes'' is reported. One adduct is trinuclear [(CuL(1))(2)NaClO(4)] (1) and the other is tetranuclear [(CuL(2))(3)Na]ClO(4)center dot EtOH (2). The ligands are the tetradentate di-Schiff base of 1,3-propanediamines and salicylaldehyde (H(2)L(1)) or 2-hydroxyacetophenone (H(2)L(2)). Both complexes have been characterized by X-ray single crystal structure analyses. In both structures, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes in addition to a chelated perchlorate anion in 1 and to six oxygen atoms from three Schiff-base complexes in 2. We have carried out a DFT theoretical study (RI-B97-D/def2-SVP level of theory) to compute and compare the formation energies of 1:2 and 1:3 adducts. The DFT study reveals that the latter is more stabilized than the former. The X-ray crystal structure of 1 shows that the packing of the trinuclear unit is controlled by unconventional C-H center dot center dot center dot O H-bonds and Cu(2+)-pi non-covalent interactions. These interactions explain the formation of 1 which is a priori disfavored with respect to 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of X-ray powder data for the melt-crystallisable aromatic poly(thioether thioether ketone) [-S-Ar-S-Ar-CO-Ar](n), ('PTTK', Ar= 1,4-phenylene), reveals that it adopts a crystal structure very different from that established for its ether-analogue PEEK. Molecular modelling and diffraction-simulation studies of PTTK show that the structure of this polymer is analogous to that of melt-crystallised poly(thioetherketone) [-SAr-CO-Ar](n) in which the carbonyl linkages in symmetry-related chains are aligned anti-parallel to one another. and that these bridging units are crystallographically interchangeable. The final model for the crystal structure of PTTK is thus disordered, in the monoclinic space group 121a (two chains per unit cell), with cell dimensions a = 7.83, b = 6.06, c = 10.35 angstrom, beta = 93.47 degrees. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel bis(glycinato) copper(II) paradodecatungstate Na-8[{Cu(gly)(2)}(2)]-{H-2(H2W12O42)}] center dot 24H(2)O (1) has been synthesized under hydrothermal conditions. The crystal structure of 1 reveals an infinite one-dimensional chain along the [100] direction and is built from paradodecatungstate (H2W12O42)(10-) clusters joined through [Cu(gly)(2)] moieties. Parallel chains are interlinked by NaO6 octahedra to generate a two-dimensional network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of the atropisomeric racemic sulfur compound 4,4′-biphenanthrene-3,3′-dithiol (H2 biphes) to a dichloromethane solution of [{M(μ-OMe)(cod)}2] (M = Rh, Ir, cod = cycloocta-1,5-diene) afforded the dithiolate-bridged complexes [{Rh2(μ-biphes)(cod)2}n] (n = 2 5 or n = 1 6) and [{Ir2(μ-biphes)(cod)2}n]·nCH2Cl27. When 1,1′-binaphthalene-2,2′-dithiol (H2 binas) reacted with [{Ir(μ-OMe)(cod)}2], complex [Ir2(μ-binas)(cod)2] 8 was obtained. Complexes 5 and 6 reacted with carbon monoxide to give the dinuclear tetracarbonyl complex [Rh2(μ-biphes)(CO)4] 9. The reaction of 9 with PR3 provided the mixed-ligand complexes [{Rh2(μ-biphes)(CO)2(PR3)2}2] · xCH2Cl2 (R = Ph, x = 2 10, C6H11, x = 1 11) and [{Rh2(μ-biphes)(CO)3(PR3)}2] · CH2Cl212 (R = OC6H4But-o). The crystal structure of 6 was determined by X-ray diffraction. Reaction of the dithioether ligand Me2biphes with [Rh(cod)2]ClO4 in CH2Cl2 solution afforded the cationic complex [Rh(cod)(Me2biphes)]ClO4 · CH2Cl213. Asymmetric hydroformylation of styrene was performed using the complexes described. The extent of aldehyde conversion ranges from 53 to 100%, with selectivities towards branched aldehydes in the range 51 to 96%. The enantioselectivities were quite low and did not exceed 20%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)