47 resultados para X-RAY STRUCTURE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray resonant scattering has been exploited to investigate the crystal structure of the AB1.5Te1.5 phases (A = Co, Rh, Ir; B = Ge, Sn). Analysis of the diffraction data reveals that CoGe1.5Te1.5 and ASn1.5Te1.5 adopt a rhombohedral skutterudite-related structure, containing diamond-shape B2Te2 rings, in which the B and Te atoms are ordered and trans to each other. Anion ordering is however incomplete, and with increasing the size of both cations and anions, the degree of anion ordering decreases. By contrast, the diffraction data of IrGe1.5Te1.5 are consistent with an almost statistical distribution of the anions over the available sites, although some ordered domains may be present. The thermoelectric properties of these materials are discussed in the light of these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.