110 resultados para Window Coupler
Resumo:
External interferences can severely degrade the performance of an Over-the-horizon radar (OTHR), so suppression of external interferences in strong clutter environment is the prerequisite for the target detection. The traditional suppression solutions usually began with clutter suppression in either time or frequency domain, followed by the interference detection and suppression. Based on this traditional solution, this paper proposes a method characterized by joint clutter suppression and interference detection: by analyzing eigenvalues in a short-time moving window centered at different time position, Clutter is suppressed by discarding the maximum three eigenvalues at every time position and meanwhile detection is achieved by analyzing the remained eigenvalues at different position. Then, restoration is achieved by forward-backward linear prediction using interference-free data surrounding the interference position. In the numeric computation, the eigenvalue decomposition (EVD) is replaced by values decomposition (SVD) based on the equivalence of these two processing. Data processing and experimental results show its efficiency of noise floor falling down about 10-20 dB.
Resumo:
Web Services for Remote Portlets (WSRP) is gaining attention among portal developers and vendors to enable easy development, increased richness in functionality, pluggability, and flexibility of deployment. Whilst currently not supporting all WSRP functionalities, open-source portal frameworks could in future use WSRP Consumers to access remote portlets found from a WSRP Producer registry service. This implies that we need a central registry for the remote portlets and a more expressive WSRP Consumer interface to implement the remote portlet functions. This paper reports on an investigation into a new system architecture, which includes a Web Services repository, registry, and client interface. The Web Services repository holds portlets as remote resource producers. A new data structure for expressing remote portlets is found and published by populating a Universal Description, Discovery and Integration (UDDI) registry. A remote portlet publish and search engine for UDDI has also been developed. Finally, a remote portlet client interface was developed as a Web application. The client interface supports remote portlet features, as well as window status and mode functions. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Efficient markets should guarantee the existence of zero spreads for total return swaps. However, real estate markets have recorded values that are significantly different from zero in both directions. Possible explanations might suggest non-rational behaviour by inexperienced market players or unusual features of the underlying asset market. We find that institutional characteristics in the underlying market lead to market inefficiencies and, hence, to the creation of a rational trading window with upper and lower bounds within which transactions do not offer arbitrage opportunities. Given the existence of this rational trading window, we also argue that the observed spreads can substantially be explained by trading imbalances due to the limited liquidity of a newly formed market and/or to the effect of market sentiment, complementing explanations based on the lag between underlying market returns and index returns.
Resumo:
The conquest of Normandy by Philip Augustus of France effectively ended the ‘Anglo-Norman’ realm created in 1066, forcing cross-Channel landholders to choose between their English and their Norman estates. The best source for the resulting tenurial upheaval in England is the Rotulus de valore terrarum Normannorum, a list of seized properties and their former holders, and this article seeks to expand our understanding of the impact of the loss of Normandy through a detailed analysis of this document. First, it demonstrates that the compilation of the roll can be divided into two distinct stages, the first containing valuations taken before royal justices in June 1204 and enrolled before the end of July, and the second consisting of returns to orders for the valuation of particular properties issued during the summer and autumn, as part of the process by which these estates were committed to new holders. Second, study of the roll and other documentary sources permits a better understanding of the order for the seizure of the lands of those who had remained in Normandy, the text of which does not survive. This establishes that this royal order was issued in late May 1204 and, further, that it enjoined the temporary seizure rather than the permanent confiscation of these lands. Moreover, the seizure was not retrospective and covers a specific window of time in 1204. On the one hand, this means that the roll is far from a comprehensive record of terre Normannorum. On the other hand, it is possible to correlate the identities of those Anglo-Norman landholders whose English estates were seized with the military progress of the French king through the duchy in May and June and thus shed new light on the campaign of 1204. Third, the article considers the initial management of the seized estates and highlights the fact that, when making arrangements for the these lands, John was primarily concerned to maintain his freedom of manoeuvre, since he was not prepared to accept that Normandy had been lost for good.
Resumo:
A sparse kernel density estimator is derived based on the zero-norm constraint, in which the zero-norm of the kernel weights is incorporated to enhance model sparsity. The classical Parzen window estimate is adopted as the desired response for density estimation, and an approximate function of the zero-norm is used for achieving mathemtical tractability and algorithmic efficiency. Under the mild condition of the positive definite design matrix, the kernel weights of the proposed density estimator based on the zero-norm approximation can be obtained using the multiplicative nonnegative quadratic programming algorithm. Using the -optimality based selection algorithm as the preprocessing to select a small significant subset design matrix, the proposed zero-norm based approach offers an effective means for constructing very sparse kernel density estimates with excellent generalisation performance.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
Resumo:
One of the major aims of BCI research is devoted to achieving faster and more efficient control of external devices. The identification of individual tap events in a motor imagery BCI is therefore a desirable goal. EEG is recorded from subjects performing and imagining finger taps with their left and right hands. A Differential Evolution based feature selection wrapper is used in order to identify optimal features in the spatial and frequency domains for tap identification. Channel-frequency band combinations are found which allow differentiation of tap vs. no-tap control conditions for executed and imagined taps. Left vs. right hand taps may also be differentiated with features found in this manner. A sliding time window is then used to accurately identify individual taps in the executed tap and imagined tap conditions. Highly statistically significant classification accuracies are achieved with time windows of 0.5 s and more allowing taps to be identified on a single trial basis.
Resumo:
Modern methods of analysis applied to cemeteries have often been used in our pages to suggest generalities about mobility and diet. But these same techniques applied to a single individual, together with the grave goods and burial rite, can open a special kind of personal window on the past. Here, the authors of a multidisciplinary project use a combination of scientific techniques to illuminate Roman York, and later Roman history in general, with their image of a glamorous mixed-race woman, in touch with Africa, Christianity, Rome and Yorkshire.
Resumo:
The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.
Resumo:
System aspects of filter radiometer optics used to sense planetary atmospheres are described. Thus the lenses, dichroic beamsplitters and filters in longwave channels of the Mars Observer PMIRR Pressure Modulator Infrared radiometer instrument are assessed individually, and as systems at 20.7µm, 31.9µm, 47.2µm wavelength. A window filter and a longwave calibration filter of the SCARAB earth observer instrument are assessed similarly.
Resumo:
This paper addresses the effects of synchronisation errors (time delay, carrier phase, and carrier frequency) on the performance of linear decorrelating detectors (LDDs). A major effect is that all LDDs require certain degree of power control in the presence of synchronisation errors. The multi-shot sliding window algorithm (SLWA) and hard decision method (HDM) are analysed and their power control requirements are examined. Also, a more efficient one-shot detection scheme, called “hard-decision based coupling cancellation”, is proposed and analysed. These schemes are then compared with the isolation bit insertion (IBI) approach in terms of power control requirements.
Resumo:
Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8–12 micron window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasibound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent theoretical considerations agree that water dimers are likely to be the dominant contributor to the self-continuum in the mm-wave spectral range.
Resumo:
A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.
Resumo:
The problem of reconstructing the (otherwise unknown) source and sink field of a tracer in a fluid is studied by developing and testing a simple tracer transport model of a single-level global atmosphere and a dynamic data assimilation system. The source/sink field (taken to be constant over a 10-day assimilation window) and initial tracer field are analysed together by assimilating imperfect tracer observations over the window. Experiments show that useful information about the source/sink field may be determined from relatively few observations when the initial tracer field is known very accurately a-priori, even when a-priori source/sink information is biased (the source/sink a-priori is set to zero). In this case each observation provides information about the source/sink field at positions upstream and the assimilation of many observations together can reasonably determine the location and strength of a test source.
Resumo:
We use ellipsometry to investigate a transition in the morphology of a sphere-forming diblock copolymer thin-film system. At an interface the diblock morphology may differ from the bulk when the interfacial tension favours wetting of the minority domain, thereby inducing a sphere-to-lamella transition. In a small, favourable window in energetics, one may observe this transition simply by adjusting the temperature. Ellipsometry is ideally suited to the study of the transition because the additional interface created by the wetting layer affects the polarisation of light reflected from the sample. Here we study thin films of poly(butadiene-ethylene oxide) (PB-PEO), which order to form PEO minority spheres in a PB matrix. As temperature is varied, the reversible transition from a partially wetting layer of PEO spheres to a full wetting layer at the substrate is investigated.