68 resultados para Wilstach, W. P.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formal and analytical models that contractors can use to assess and price project risk at the tender stage have proliferated in recent years. However, they are rarely used in practice. Introducing more models would, therefore, not necessarily help. A better understanding is needed of how contractors arrive at a bid price in practice, and how, and in what circumstances, risk apportionment actually influences pricing levels. More than 60 proposed risk models for contractors that are published in journals were examined and classified. Then exploratory interviews with five UK contractors and documentary analyses on how contractors price work generally and risk specifically were carried out to help in comparing the propositions from the literature to what contractors actually do. No comprehensive literature on the real bidding processes used in practice was found, and there is no evidence that pricing is systematic. Hence, systematic risk and pricing models for contractors may have no justifiable basis. Contractors process their bids through certain tendering gateways. They acknowledge the risk that they should price. However, the final settlement depends on a set of complex, micro-economic factors. Hence, risk accountability may be smaller than its true cost to the contractor. Risk apportionment occurs at three stages of the whole bid-pricing process. However, analytical approaches tend not to incorporate this, although they could.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simultaneous measurement of the effects of low soy protein concentration, pH and high pressure treatment at room temperature on solubility, emulsifying properties and rheological properties (loss modulus, G '') of soy protein isolate (SPI) were evaluated. Central composite rotatable designs (2(3)) were employed over two pH ranges (2.66-4.34 and 5.16-6.84) with SPI concentration (0.32-3.68%) and pressure (198-702 MPa) as the other independent variables. The surface responses were obtained for protein solubility, emulsifying activity index (EAI) and G ''. The samples with the highest effect on protein solubility, EAI and G '' values were evaluated, as well, by electrophoresis and free sulphydryl determination. The pH was the main factor that affected protein solubility, with solubility at a maximum at pH < 3 or pH > 6. Increasing SPI concentration and decreasing/increasing the pH away from the isoelectric point both caused a reduction in EAI. Loss modulus (G '') was found to increase with SPI concentration in both pH ranges. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A key idea in the study of the Atlantic meridional overturning circulation (AMOC) is that its strength is proportional to the meridional density gradient, or more precisely, to the strength of the meridional pressure gradient. A physical basis that would tell us how to estimate the relevant meridional pressure gradient locally from the density distribution in numerical ocean models to test such an idea, has been lacking however. Recently, studies of ocean energetics have suggested that the AMOC is driven by the release of available potential energy (APE) into kinetic energy (KE), and that such a conversion takes place primarily in the deep western boundary currents. In this paper, we develop an analytical description linking the western boundary current circulation below the interface separating the North Atlantic Deep Water (NADW) and Antarctic Intermediate Water (AAIW) to the shape of this interface. The simple analytical model also shows how available potential energy is converted into kinetic energy at each location, and that the strength of the transport within the western boundary current is proportional to the local meridional pressure gradient at low latitudes. The present results suggest, therefore, that the conversion rate of potential energy may provide the necessary physical basis for linking the strength of the AMOC to the meridional pressure gradient, and that this could be achieved by a detailed study of the APE to KE conversion in the western boundary current.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines criteria for the existence of two stable states of the Atlantic Meridional Overturning Circulation (AMOC) using a combination of theory and simulations from a numerical coupled atmosphere–ocean climate model. By formulating a simple collection of state parameters and their relationships, the authors reconstruct the North Atlantic Deep Water (NADW) OFF state behavior under a varying external salt-flux forcing. This part (Part I) of the paper examines the steady-state solution, which gives insight into the mechanisms that sustain the NADW OFF state in this coupled model; Part II deals with the transient behavior predicted by the evolution equation. The nonlinear behavior of the Antarctic Intermediate Water (AAIW) reverse cell is critical to the OFF state. Higher Atlantic salinity leads both to a reduced AAIW reverse cell and to a greater vertical salinity gradient in the South Atlantic. The former tends to reduce Atlantic salt export to the Southern Ocean, while the latter tends to increases it. These competing effects produce a nonlinear response of Atlantic salinity and salt export to salt forcing, and the existence of maxima in these quantities. Thus the authors obtain a natural and accurate analytical saddle-node condition for the maximal surface salt flux for which a NADW OFF state exists. By contrast, the bistability indicator proposed by De Vries and Weber does not generally work in this model. It is applicable only when the effect of the AAIW reverse cell on the Atlantic salt budget is weak.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F-1 hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14 to 55 of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca 21 and Mg 21 uptake and homeostasis at the molecular level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results: We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions: This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving the sustainability of agriculture.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast-and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Potassium (K) fertilizers are used in intensive and extensive agricultural systems to maximize production. However, there are both financial and environmental costs to K-fertilization. It is therefore important to optimize the efficiency with which K-fertilizers are used. Cultivating crops that acquire and/or utilize K more effectively can reduce the use of K-fertilizers. The aim of the present study was to determine the genetic factors affecting K utilization efficiency (KUtE), defined as the reciprocal of shoot K concentration (1/K(shoot)), and K acquisition efficiency (KUpE), defined as shoot K content, in Brassica oleracea. Genetic variation in K(shoot) was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with K(shoot) and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse. More than two-fold variation in K(shoot) was observed among DFS accessions grown in the glasshouse, a significant proportion of which could be attributed to genetic factors. Several QTL associated with K(shoot) were identified, which, despite a significant correlation in K(shoot) among genotypes grown in the glasshouse and field, differed between these two environments. A QTL associated with K(shoot) in glasshouse-grown plants (chromosome C7 at 62 center dot 2 cM) was confirmed using substitution lines. This QTL corresponds to a segment of arabidopsis chromosome 4 containing genes encoding the K(+) transporters AtKUP9, AtAKT2, AtKAT2 and AtTPK3. There is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.