70 resultados para White Sands Missile Range (N.M.). Applied Environments Test Branch.
Resumo:
Virtual Reality (VR) has been used in a variety of forms to assist in the treatment of a wide range of psychological illness. VR can also fulfil the need that psychologists have for safe environments in which to conduct experiments. Currently the main barrier against using this technology is the complexity in developing applications. This paper presents two different co-operative psychological applications which have been developed using a single framework. These applications require different levels of co-operation between the users and clients, ranging from full psychologist involvement to their minimal intervention. This paper will also discuss our approach to developing these different environments and our experiences to date in utilising these environments.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.
Resumo:
A number of recent articles emphasize the fundamental importance of taphonomy and formation processes to interpretation of plant remains assemblages, as well as the value of interdisciplinary approaches to studies of environmental change and ecological and social practices. This paper examines ways in which micromorphology can contribute to integrating geoarchaeology and archaeobotany in analysis of the taphonomy and context of plant remains and ecological and social practices. Micromorphology enables simultaneous in situ study of diverse plant materials and thereby traces of a range of depositional pathways and histories. In addition to charred plant remains, also often preserved in semi-arid environments are plant impressions, phytoliths and calcitic ashes. These diverse plant remains are often routinely separated and extracted from their depositional context or lost using other analytical techniques, thereby losing crucial evidence on taphonomy, formation processes and contextual associations, which are fundamental to all subsequent interpretations. Although micromorphological samples are small in comparison to bulk flotation samples of charred plant remains, their size is similar to phytolith and pollen samples. In this paper, key taphonomic issues are examined in the study of: fuel; animal dung, animal management and penning; building materials; and specific activities, including food storage and preparation and ritual, using selected case-studies from early urban settlements in the Ancient Near East. Microarchaeological residues and experimental archaeology are also briefly examined.
Resumo:
Stereoscopic white-light imaging of a large portion of the inner heliosphere has been used to track interplanetary coronal mass ejections. At large elongations from the Sun, the white-light brightness depends on both the local electron density and the efficiency of the Thomson-scattering process. To quantify the effects of the Thomson-scattering geometry, we study an interplanetary shock using forward magnetohydrodynamic simulation and synthetic white-light imaging. Identifiable as an inclined streak of enhanced brightness in a time–elongation map, the travelling shock can be readily imaged by an observer located within a wide range of longitudes in the ecliptic. Different parts of the shock front contribute to the imaged brightness pattern viewed by observers at different longitudes. Moreover, even for an observer located at a fixed longitude, a different part of the shock front will contribute to the imaged brightness at any given time. The observed brightness within each imaging pixel results from a weighted integral along its corresponding ray-path. It is possible to infer the longitudinal location of the shock from the brightness pattern in an optical sky map, based on the east–west asymmetry in its brightness and degree of polarisation. Therefore, measurement of the interplanetary polarised brightness could significantly reduce the ambiguity in performing three-dimensional reconstruction of local electron density from white-light imaging.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
Based on a three year action research project, this study examines one strand of that research, namely the impact that ‘purpose’, i.e. exploring the range of rationales for studying a subject, has in helping white trainee teachers embrace cultural and ethnic diversity within their teaching. Through ‘purpose’ trainees explored different reasons why history should be taught (and by implication what content should be taught and how it should be taught) and the relationship of these reasons to diversity. Focusing on ‘purpose’ appears to have a positive impact on many trainees from white, mono-ethnic backgrounds, enabling them to bring diversity into the school curriculum, in this case history teaching. It offers one way to counter concerns about issues of ‘whiteness’ in the teaching profession and by teaching a more relevant curriculum has a potential positive impact on the achievement of students from minority ethnic backgrounds.
Resumo:
Pocket Data Mining (PDM) is our new term describing collaborative mining of streaming data in mobile and distributed computing environments. With sheer amounts of data streams are now available for subscription on our smart mobile phones, the potential of using this data for decision making using data stream mining techniques has now been achievable owing to the increasing power of these handheld devices. Wireless communication among these devices using Bluetooth and WiFi technologies has opened the door wide for collaborative mining among the mobile devices within the same range that are running data mining techniques targeting the same application. This paper proposes a new architecture that we have prototyped for realizing the significant applications in this area. We have proposed using mobile software agents in this application for several reasons. Most importantly the autonomic intelligent behaviour of the agent technology has been the driving force for using it in this application. Other efficiency reasons are discussed in details in this paper. Experimental results showing the feasibility of the proposed architecture are presented and discussed.
Resumo:
In barley, variation in the requirement for vernalization (an extended period of low temperature before flowering can occur) is determined by the VRN-H1, -H2 and -H3 loci. In European cultivated germplasm, most variation in vernalization requirement is accounted for by alleles at VRN-H1 and VRN-H2 only, but the range of allelic variation is largely unexplored. Here we characterise VRN-H1 and VRN-H2 haplotypes in 429 varieties representing a large portion of the acreage sown to barley in Western Europe over the last 60 years. Analysis of genotype, intron I sequencing data and growth habit tests identified three novel VRN-H1 alleles and determined the most frequent VRN-H1 intron I rearrangements. Combined analysis of VRN-H1 and VRN-H2 alleles resulted in the classification of seventeen VRN-H1/VRN-H2 multi-locus haplotypes, three of which account for 79% of varieties. The molecular markers employed here represent powerful diagnostic tools for prediction of growth habit and assessment of varietal purity. These markers will also allow development of germplasm to test the behaviour of individual alleles with the aim of understanding the relationship between allelic variation and adaptation to specific agri-environments.
Resumo:
Middle Pleistocene deposits at Hackney, north London comprise a thick unit of organic sands and silts occupying a channel near the confluence of the River Thames in south-eastern England and its left-bank tributary the River Lea. They represent a short time interval, perhaps no more than a few years, within a late Middle Pleistocene interglacial. The organic sediments are overlain by unfossiliferous sands and gravels indicating deposition on the floodplain of a braided river under cool or cold climatic conditions. The fossil plant, insect, mollusc and vertebrate remains from the interglacial deposits all indicate climatic conditions with summers warmer than the present in SE England, and winters with a similar thermal climate. The biostratigraphic evidence suggests that the time period represented by the organic unit is part of MIS 9, although the geochronological evidence for such an age is inconclusive. The palaeontological evidence strongly suggests that this temperate stage was warmer than the succeeding temperate stage MIS 7 or the Holocene, and approaching the Ipswichian (MISs 5e) in its warmth. The multidisciplinary description of the Hackney deposits is one of the first to reconstruct terrestrial conditions in Marine Isotope Stage 9 in Western Europe.
Resumo:
It has been argued that extended exposure to naturalistic input provides L2 learners with more of an opportunity to converge of target morphosyntactic competence as compared to classroom-only environments, given that the former provide more positive evidence of less salient linguistic properties than the latter (e.g., Isabelli 2004). Implicitly, the claim is that such exposure is needed to fully reset parameters. However, such a position conflicts with the notion of parameterization (cf. Rothman and Iverson 2007). In light of two types of competing generative theories of adult L2 acquisition – the No Impairment Hypothesis (e.g., Duffield and White 1999) and so-called Failed Features approaches (e.g., Beck 1998; Franceschina 2001; Hawkins and Chan 1997), we investigate the verifiability of such a claim. Thirty intermediate L2 Spanish learners were tested in regards to properties of the Null-Subject Parameter before and after study-abroad. The data suggest that (i) parameter resetting is possible and (ii) exposure to naturalistic input is not privileged.
Resumo:
Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1, 3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.
Resumo:
Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P = 0.05) and this improved further with addition of collagen IV (P = 0.01). Oxidised gels presented larger internal pores (diameter: 0.2 - 0.8 microm) than unmodified gels (pore diameter: 0.05 - 0.1 microm) and were significantly less stiff (P = 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.
Resumo:
In this article, we review the state-of-the-art techniques in mining data streams for mobile and ubiquitous environments. We start the review with a concise background of data stream processing, presenting the building blocks for mining data streams. In a wide range of applications, data streams are required to be processed on small ubiquitous devices like smartphones and sensor devices. Mobile and ubiquitous data mining target these applications with tailored techniques and approaches addressing scarcity of resources and mobility issues. Two categories can be identified for mobile and ubiquitous mining of streaming data: single-node and distributed. This survey will cover both categories. Mining mobile and ubiquitous data require algorithms with the ability to monitor and adapt the working conditions to the available computational resources. We identify the key characteristics of these algorithms and present illustrative applications. Distributed data stream mining in the mobile environment is then discussed, presenting the Pocket Data Mining framework. Mobility of users stimulates the adoption of context-awareness in this area of research. Context-awareness and collaboration are discussed in the Collaborative Data Stream Mining, where agents share knowledge to learn adaptive accurate models.
Resumo:
Although no GM crops currently are licensed for commercial production in the UK, as opposition to GM crops by consumers softens, this could change quickly. Although past studies have examined attitudes of UK farmers toward GM technologies in general, there has been little work on the impact of possible coexistence measures on their attitudes toward GM crop production. This could be because the UK Government has not engaged in any public dialogue on the coexistence measures that might be applied on farms. Based on a farm survey, this article examines farmers’ attitudes toward GM technologies and planting intentions for three crops (maize, oilseed rape, and sugar beet) based on a GM availability scenario. The article then nuances this analysis with a review of farmer perceptions of the level of constraint associated with a suite of notional farm-level coexistence measures and issues, based on current European Commission guidelines and practice in other EU Member States.
Resumo:
Buildings affect people in various ways. They can help us to work more effectively; they also present a wide range of stimuli for our senses to react to. Intelligent buildings are designed to be aesthetic in sensory terms not just visually appealing but ones in which occupants experience delight, freshness, airiness, daylight, views out and social ambience. All these factors contribute to a general aesthetic which gives pleasure and affects one’s mood. If there is to be a common vision, it is essential for architects, engineers and clients to work closely together throughout the planning, design, construction and operational stages which represent the conception, birth and life of the building. There has to be an understanding of how patterns of work are best suited to a particular building form served by appropriate environmental systems. A host of technologies are emerging that help these processes, but in the end it is how we think about achieving responsive buildings that matters. Intelligent buildings should cope with social and technological changes and also be adaptable to short-term and long-term human needs. We live through our senses. They rely on stimulation from the tasks we are focused on; people around us but also the physical environment. We breathe air and its quality affects the olfactory system; temperature is felt by thermoreceptors in the skin; sound enters our ears; the visual scene is beheld by our eyes. All these stimuli are transmitted along the sensory nervous system to the brain for processing from which physiological and psychological reactions and judgments are formed depending on perception, expectancies and past experiences. It is clear that the environmental setting plays a role in this sensory process. This is the essence of sensory design. Space plays its part as well. The flow of communication is partly electronic but also largely by people meeting face to face. Our sense of space wants different things at different times. Sometimes privacy but other times social needs have to be satisfied besides the organizational requirement to have effective human communications throughout the building. In general if the senses are satisfied people feel better and work better.